• Title/Summary/Keyword: explosives

Search Result 1,149, Processing Time 0.026 seconds

Analysis for explosives in contaminated soil using the electrochemical method (폭발물 오염토양에서 전기화학법을 이용한 RDX 흔적량의 분석)

  • Ly, Suw Young
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.129-134
    • /
    • 2008
  • Cyclic voltammetry (CV) and square wave stripping voltammetry (SW) analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using the double-stranded ds calf thymus (DNA) mixed in carbon nanotube paste electrode (PE) were provided. The optimum analytical conditions were determined and the peak potential was 0.2 V vs. Ag/AgCl. The linear working ranges of CV (50-75 ug/L) and SW (5-80 ng/L) were obtained. The precisions of RSD in the 10 ug/L was 0.086% (n=15) and the detection limit was 0.65 ng/L ($2.92{\times}10^{-12}M$) (S/N=3) with 300 s adsorption time at the optimum condition. The method was used to determine the presence of explosive chemicals in contaminated soil samples.

A Study on Overseas Battle Cases Using Combat Drone (공격 드론을 활용한 해외 전투사례 연구)

  • Sang-Hyuk Park;Sung-Kwon Kim;Seung-Pil Namgung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.403-407
    • /
    • 2023
  • This study started with the background that future South Korean military organizations should develop a complex system linking unmanned systems by analyzing and considering cases using "drone," which has recently become an essential means of war. In 2014 and 2022, South Korea is facing serious security threats from North Korean drones that have recently invaded South Korea's airspace in a row. If a North Korean drone was loaded with explosives and poisonous gas and invaded our airspace, the damage would be more serious. Furthermore, what the Azerbaijan-Armenian War of 2020 and the ongoing Ukraine-Russia war have in common is that battles using "combat drones" are underway. Watching this shift in the domestic and overseas war paradigm, drones have become essential for military operations. In the context of a "ceasefire" and the military environment on the Korean Peninsula, South Korea should actively develop "Combat drones" that take into account precise strikes and portability against targets linked to military drones.

Predicting Single-hole Blast-induced Fracture Zone Using Finite Element Analysis

  • Jawad Ur Rehman;Duhee Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.7
    • /
    • pp.5-19
    • /
    • 2024
  • During the blasting process, a fracture zone is formed in the vicinity of the blast hole. Any damage that extends beyond the excavation boundary line necessitates the implementation of an additional support system to assure safety. Typically, fracture zone radius is estimated from blast hole pressure using theoretical methods due to its simplicity. However, linear charge concentration (kg/m) is used for tunnel blasting. This paper compiles Swedish experimental datasets to estimate the radius of fracture zones based on linear charge concentration. Further numerical analyses are performed in LS-DYNA for coupled single-hole blasting. The Riedel-Hiermaier-Thoma (RHT) model has been selected as the constitutive model for this investigation. The numerical model is validated against small-scale laboratory tests. Parametric studies are conducted to predict fracture zones in granite and sandstone rocks using two kinds of explosives, PETN and AFNO. The analyses evaluate ten types of blast hole sizes, ranging from 17 to 100 mm. The results indicate that granite has a larger fracture zone than sandstone, and the PETN explosive predicts more damage than ANFO. Smaller blast holes exhibit smaller fracture zones in comparison to larger blast holes. Wave propagation is more rapidly attenuated in granite than in sandstone. Subsequently, the predicted fracture zone outcomes are compared with the empirical dataset. Fracture zones of medium blast hole diameter align well with the experimental data set. A predictive equation is derived from the data set, which may be used to evaluate blast design to manage fracture zones beyond the excavation line.

Design of Polymer Composites for Effective Shockwave Attenuation (충격파 완화 복합재의 설계)

  • Gyeongmin Park;Seungrae Cho;Hyejin Kim;Jaejun Lee
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • This review paper investigates the use of shockwave attenuating materials within composite structures to enhance personnel protection against blast-induced traumatic brain injury (bTBI). This paper also introduces experimental methodologies exploited in the generation and measurement of shockwaves to evaluate the performance of the shock dissipating composites. The generation of shockwaves is elucidated through diverse approaches such as high-energy explosives, shock tubes, lasers, and laser-flyer techniques. Evaluation of shockwave propagation and attenuation involves the utilization of cutting-edge techniques, including piezoelectric, interferometer, electromagnetic induction, and streak camera methods. This paper investigates phase-separated materials, including polyurea and ionic liquids, and provides insight into composite structures in the quest for shockwave pressure attenuation. By synthesizing and analyzing the findings from these experimental approaches, this review aims to contribute valuable insights to the advancement of protective measures against blast-induced traumatic brain injuries.

Analysis of Ammunition Inspection Record Data and Development of Ammunition Condition Code Classification Model (탄약검사기록 데이터 분석 및 탄약상태기호 분류 모델 개발)

  • Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.

Applicability of Pocket-Charge Blasting for Large-Scale Marine Reclamation Projects (대규모 해양매립 공사를 위한 포켓차지 발파의 적용성 검토 연구)

  • Ko, Young-Hun;Jin, Yeon-Ho;Lee, Dong-Hee;Kim, Min-Seong;Kim, Gunwoong;Kim, Jeong-Heum;Kim, Nam-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.21-37
    • /
    • 2024
  • Maximizing the efficiency of blasting operations is crucial for reducing project costs, shortening timelines, and minimizing environmental impacts-key factors for the success of large-scale marine reclamation projects. This study explores the application of pocket-charging methods, developed from mining principles, to enhance rock fragmentation efficiency in large-scale blasts. The aim is to optimize the material production process for marine reclamation construction. The pocket-charging technique efficiently disperses blasting energy, increasing the extent of rock fragmentation and thereby improving overall blasting performance. Even with minimal explosive quantities, optimal results and cost-efficient, expedited construction can be achieved. This research validates the effectiveness of pocket-charge blasting through blast simulation programs and outlines suitable blasting designs and strategies.

Comparison of advance rate and powder factor of two- and three-free-face blasting (2, 3 자유면 발파의 굴진율 및 비장약량 비교)

  • Youngmin Yoon;Seokwon Jeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.403-419
    • /
    • 2024
  • Advance rate significantly affects both the construction period and cost in tunnel blasting. As such, there has been persistent research dedicated to the development of innovative blasting technique aimed at enhancing the advance rate. This paper aims to provide fundamental insights into the differences in advance rate and the powder factor between two- and three-free-face blasting, laying the groundwork for the advancement of tunnel blasting techniques. Large-scale cement mortar specimens were fabricated, and blasting tests were conducted for both two- and three-free-face blasting. Experimental findings were then compared with those from numerical simulation. Notably, an increase in the number of free faces, under uniform conditions, significantly improved the advance rate while reducing the powder factor. The outcomes of this study serve as crucial groundwork for devising blasting patterns employing three-free-face blasting, characterized by improved advance rates and minimized powder factors. Consequently, the anticipated outcomes include an overall improvement in tunnel advance rates and a reduction in the number of drilling holes and the amounts of explosives.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.