• Title/Summary/Keyword: explosion pressure

Search Result 461, Processing Time 0.029 seconds

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

Process Risk Assessment for a Batch Condensation Reaction of Polyester Resin using K-PSR Technique (K-PSR 기법을 활용한 회분식 폴리에스터 축합반응에서의 공정 위험성 평가 연구)

  • Park, Kyung-Min;Lee, Dong-Kyu;Lee, Haakil;Lee, Joon-Man;Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2019
  • Risk assessment and analysis for a medium-to-small sized chemical plant that manufactures a polyester resin by the process of batch-type condensation reaction was conducted using K-PSR technique which is one of the risk assessment methods used to implement the Process Safety Management System (PSM). K-PSR is a risk assessment technique developed by KOSHA to compensate for difficulties caused by the lack of infrastructure of medium-to-small sized chemical plants in the re-evaluation. To apply the K-PSR technique, the entire process of a selected chemical palnt was classified in two review sections, i.e., the condensation reaction process and the dilution/filtration process, and the potential risks of the process about these review sections were identified and classified based on the four guide-words (release, fire.explosion, process trouble, and injury). As the results of the research, refer to recommend of risk rating has been confirmed that non-destructive testing of old facilities and the preparation of LOTO procedures for the electrical equipments are necessary as specific measures to prevent the risk of release and fire.explosion. It was also shown that pressure gauges and thermometers should be installed on the hot-oil supply piping to minimize the process trouble, and exhausting hood should be installed to prevent potential injury.

A Study on the Identification of Hazardous Factors and Prevention of Accident in Old Boilers (노후보일러 유해인자 발굴 및 사고예방에 관한 연구)

  • Sa, Min-Hyung;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Large-scale industrial boilers operating at high temperature and high pressure, have a large amount of water, and a large amount of energy is released at the time of explosion. Currently, most industrial boilers use gas fuel such as LNG and LPG, etc. and fuel exists in the same space as equipment, so there is a high possibility of secondary damage such as fire or explosion in the event of a boiler accident. Both special care and management are required to operate the very dangerous equipment that causes casualty 2.51 per accident. For boilers of a certain size or more, the Korea Energy Agency conducts inspections in accordance with the Energy Usage Rationalization Act, KS, and public notice of the Ministry of Industry, Trade and Resources. In this research, based on the results of the inspection, the hazard factorss are configured, and a questionnaire is conducted to the inspector, the equipment manager, the maintenance person, and the person in charge of the manufacturer. We analyzed the results by using AHP (Analytic Hierarchy Process). As a result of analysis, generally recognized hazard factorss are not good management, measurement failure, specification failure, water leak, leak analysis, but connection, welding, scale, and corrosion, etc. are relatively less important. It is judged that the adverse factors that are recognized to be highly important among all groups and careers are already well managed, but less important and adverse factors should be well managed to ensure that the safe usage of the boiler.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

Fire Hazard of PP and LLDPE dust in Chemical Plant Process (석유화학플랜트에서 발생하는 PP(Poly Propylene) 및 LLDPE(Linear Low Density Poly Ethylene) 분진의 연소 위험성에 관한 연구)

  • 김정환;이창우;현성호;권경옥
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Thermal properties of PP and LLDPE dusts from chemical plant and their risks of coexisting with oxidizer were investigated by a pressure vessel. The thermal decomposition of PP and LLDPE dusts with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of PP and LLDPE dusts. Using the pressure vessel which can estimate ignition and explosion of PP and LLDPE dusts coexisting with oxidizer, a series of bursting of a rupture disc, experiments has been conducted by varying the orifice diameters the weight ratio of the sample coexisting with oxidizers and the species of oxidizer. And fire gases was measured by gas analyser ($ECOM-A^+$). According to the results of the thermal analysis of PP and LLDPE dusts, the decomposition temperature range of PP and LLDPE dusts was 200 to 350 and 300 to $500^{\circ}c$, respectively. The risk of PP and LLDPE dusts coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the weight ratio of the sample to the oxidizer were increased. In addition, the risk of PP and LLDPE dusts coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer. It is found that the risk of fire becomes high when the decomposition temperature of the sample is about same as that of oxidizer. Also, the fire gases was occurred carbon monoxide and carbon dioxide. The amount of carbon monoxide generated was found to be much higher in PP decomposition than in LLDPE due to incomplete combustion of PP which has high content of carbon in chemical compound.

  • PDF

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea (울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석)

  • Hwang, Sang Koo;Lee, So-Jin;Han, Kee Hwan
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.513-527
    • /
    • 2018
  • We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.

A Study on the Performance of Pipe Scale Cleaner using Natural Organic Acid (천연 유기산을 이용한 배관 스케일 세정제 성능에 관한 연구)

  • Kang, Hyung Seok;Yang, Won Suk;Kim, Young Il;Kim, Sean Hay;Choi, Dong Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.530-537
    • /
    • 2017
  • Scales generated inside pipes cause negative effects on heat transfer performance, pressure loss and flow rate due to increased thermal resistance and reduced flow cross-sectional area. If these scales are not prevented or eliminated, thermal-fluid performance of the facilities can be deteriorated, or in extreme cases, accidents such as explosion due to overheating can occur. There are two ways to remove the scales, physically and chemically. Removing the scales physically needs specific machines which are expensive, and removing them chemically may provoke corrosion or shorten the age of the facilities. In this study, an eco-friendly pipe scale cleaner using natural organic acid is developed by applying the concept of a limestone cave generation. The manufactured scale cleaner is applied to remove the scales in industrial, water heating and urinal pipes. The results show that this cleaner removes scales more effectively and safely compared to existing scale treatments. Scale removal efficiencies of this work is 1.2~10.7 times for industrial pipes and 1.8~15.5 times for boiler water heating pipes higher than those of conventional cleaners.

Study On Effect of Fe Density on Electrolyte Exfoliation of Chromium Plating Layer (전해액의 Fe 농도에 의한 크롬도금 탈락 연구)

  • Park, Jin-Saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1297-1303
    • /
    • 2015
  • The internal chromium plating of a long-axis tube is widely used in military and industrial application, with the thick hard plating formed using a mixed solution of Chromium acid and catalytic $H_2SO_4$. A large-caliber gun can endure a high explosive force as a result of the increased stiffness and wear resistance provided by this internal hard chromium surface. The internal chromium layer of a tube is prone to exfoliation caused by the high kinetic energy of the projectile and high pressure of the explosion. Therefore, we reviewed the plating process. Chromium plating comprises many steps, including the removal of Grease, water cleaning, electrolytic abrasion, etching, plating, water cleaning, and hydrogen brittleness removal. The exfoliated chromium plating layer is affected by the adhesion property of the plating. In particular, the Fe concentration of the electrolyte affects the adhesion property. The optimum Fe concentration for effectively suppressing the exfoliation of the plating layer was established by using a scanning electron microscope to determine the surface roughness, and the effectiveness was proved in an adhesion test, etc.