• Title/Summary/Keyword: explosion over-pressure

Search Result 33, Processing Time 0.029 seconds

Prediction of the Blast Wave Propagation Over a Kick Motor Test Facility (Kick Motor 시험장 충격파 전파 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.220-223
    • /
    • 2008
  • A test facility to measure the performance of a KM(Kick Motor) is constructed, and prediction of blast wave propagation over the facility is performed to check if the safety of test personnel in MCC(Main Control Center) can be guaranteed even for the most severe explosion. Assuming that the initial explosion energy is contained in a sphere under the pressure of 500, 1000, 1500 psi, respectively, the radius of the sphere is determined for each pressure to set the mass of contained explosion gas to 35 kg. The material properties of explosion gas are set to be the ones of KM propellant combustion gas under normal condition. To reduce the effort and time required for a complex three-dimensional modeling, the flowfield is approximated to axismmetry. Calculations are performed for all three initial pressure conditions, and the analysis of the result is given for 1500 psi which is expected to be the worst case. The maximum pressure is 3.5 psig while the minimum pressure is -1.2 psig on the outer wall of MCC, and the maximum pressure difference between the inner and outer walls of protection wall amounts to 3.0 psi.

  • PDF

A Study on Estimation of Human Damage for Overpressure by Vapor Cloud Explosion in Enclosure Using Probit Model (프로빗모델을 통한 밀폐공간에서의 증기운폭발 과압에 의한 인체피해예측)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • The demand of gas as an eco-friendly energy source has being increased. With the demand of gas, the use of gas is also increased, so injury and loss of life by the explosion and fire have been increasing every year. Hence the influence on over-pressure caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the Hopkinson's scaling law and damage effect by the accident to a human body was estimated by applying the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human over 3 meters away and that of overpressure to tympanum rupture over 25 meters away from the explosion shows nothing.

  • PDF

Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene (프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구)

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.356-361
    • /
    • 2020
  • Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ℃. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.

A Study on Estimation of Overpressure Damage Caused by Rupture of Butane Can (volume : 34 g) (부탄 캔(용량 : 34 g)파열로 인한 과압의 피해예측에 관한 연구)

  • Leem Sa Hwan;Choi Ic Whoan;Lim Dong Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.8-15
    • /
    • 2005
  • With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. As of October, 2004 casualties resulted from butane can accidents increased 1.5 times compared to the same period of the previous year. In this study, the influence of explosion over-pressure caused by the rupture of butane can thrown away after use was calculated by using the Hopkinson's Scaling Law and the accident damage was estimated by applying the influence on the adjacent structures and people into the Probit model. As a result of the damage estimation conducted by using the Probit model, both the damage possibility of explosion over-pressure to structures 50 meters away and that of over-pressure to people 10 meters away showed nothing. The explosion efficiency used was 100 percent. As a result of this, the actual damage influenced by the rupture of butane can would be lower than the value calculated in this study and expected to be safer.

  • PDF

A Study on the Quantitative Analysis and Estimation for Surround Building caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG충전소에서 증기운폭발이 주변건물에 미치는 영향의 정량적 해석 및 평가에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • This paper is estimation of structure damage caused by Explosion in LPG(Liquefied Petroleum Gas) filling station. As we estimate the influence of damage which occur at gas storage tank in filling station. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE(Vapor Cloud Explosion) in filling station was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of max 265 meters away and to glass bursting of 1150 meters away was nearly zero in open space explosion.

에멀젼 폭약의 폭속변화에 따른 진동특성 연구

  • Gang, Dae-U;An, Bong-Do
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.351-357
    • /
    • 2007
  • We have compared a special character(pressure of explosion, gas volume, energy of explosion, temperature of explosion, strength) of different three emulsion explosives which is different velocity by Nitrodyn program that is calculated explosion reaction. We have analyzed the character of the vibration from a vibration data which is a result from test blasting in different velocity of detonation for three emulsion explosives of the same size(17mm) in the same rock. As a result, the vibration is decreased when the velocity of detonation is decreased within 40m from origin of explosion but it is familiar character over 40m, so there isn't much affect the velocity of detonation in decreased vibration over 40m.

  • PDF

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

A Study on Estimation of Structure Damage caused by VCE (VCE에 의한 건물피해예측에 관한 연구)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is estimation of structure damage caused by VCE(Vapor Cloud Explosion) in enclosure. As we estimate the influence of damage which occur at gas facility in factory. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE in enclosure was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of 20 meters away and to glass bursting of 80 meters away was nearly zero in open space explosion.

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

A Study on Estimation of Structure Damage caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 건물피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.42-45
    • /
    • 2007
  • This paper is estimation of structure damage caused by VCE(Vapor Cloud Explosion) in enclosure. As we estimate the influence of damage which occur at gas facility in factory. We can utilize it the elementary data of safety distance. In this study, the influence of explosion over-pressure caused by VCE in enclosure was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures 20 meters away and that of overpressure to glass bursting 80m meters away showed nothing.

  • PDF