• Title/Summary/Keyword: explosion model

Search Result 376, Processing Time 0.038 seconds

Initiating Events Study of the First Extraction Cycle Process in a Model Reprocessing Plant

  • Wang, Renze;Zhang, Jiangang;Zhuang, Dajie;Feng, Zongyang
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.117-121
    • /
    • 2016
  • Background: Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Materials and Methods: Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. Results and Discussion: The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. Conclusion: The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion (수중폭발에 의한 해중철도의 간이 충격 응답 해석)

  • Seo, Sung-Il;Sa-Gong, Myung;Son, Seung-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • To design a submerged floating railway that is safe against underwater explosions, railway behavior must be investigated and clarified. In this paper, shock waves and impulse pressures generated by a charge away from the submerged floating railway are expressed using experimental formulas. The submerged floating railway tethered by mooring lines is modeled as a simply supported beam with elastic springs. Finite element analysis for the beam model subjected to impulse loading is conducted so that the response of the submerged floating railway can be investigated. For design purposes, a simplified analysis method combined with dynamic load factor is proposed for the same model. Maximum deformation and internal forces are calculated and compared with the time dependent analysis results. It is shown that the simplified analysis results show good agreement.

Using TPC Model to Understand Broadband Diffusion in Korea (TPC(Technology, Policy and Culture) 모델을 이용한 한국의 초고속인터넷 확산 요인 분석)

  • Kum, Heisung
    • Informatization Policy
    • /
    • v.17 no.3
    • /
    • pp.74-97
    • /
    • 2010
  • This paper investigates factors that have facilitated the rapid diffusion of broadband in South Korea. It finds that the quick spread of broadband access in South Korea is the result of combining the government's strategic ICT policy considering cultural traits, businesses'competitive efforts, and the timely explosion of domestic demand for IT service. This paper also discusses the impact of broadband diffusion on the digital divide. It finds that although there are still regional and age gaps in broadband access, the Korean government and businesses are working to alleviate these problems through various ways from systemic to physical ones. While the deployment of broadband cannot eliminate every issue of the digital divide, broadband access minimizes the digital divide by lowering the barrier to inequitable access to information. This paper concludes with a number of recommendations that address selected policy issues related to the spread of broadband Internet for its successful implementation.

  • PDF

Optimization of Gas Detector Location by Analysis of the Dispersion Model of Hazardous Chemicals (유해화학물질의 확산 모델 분석을 통한 가스감지기 위치 최적화)

  • Jeong, Taejun;Lim, Dong-Hui;Kim, Min-Seop;Lee, Jae-Geol;Yoo, Byung Tae;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The domestic gas detector installation standards applied to gas detectors, which are one of the facilities that can prevent accidents such as fire, explosion, and leakage that can cause serious industrial accidents, do not take into account the behavioral characteristics of hazardous chemicals in the atmosphere. It can be seen that the technical basis is insufficient because the standard is applied. Therefore, in this study, the size of the leak hole for each facility mainly used in chemical plants and the diffusion distance according to the concentration of interest of hazardous chemicals were analyzed, and based on this, the optimal installation distance for gas detectors for each material was suggested. Using the method presented in this study, more economical and effective gas detector installation can be expected, and furthermore, it can be expected to help prevent serious industrial accidents.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

The "open incubation model": deriving community-driven value and innovation in the incubation process

  • Xenia, Ziouvelou;Eri, Giannaka;Raimund, Brochler
    • World Technopolis Review
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Globalization, increasing technological advancements and dynamic knowledge diffusion are moving our world closer together at a unique scale and pace. At the same time, our rapidly changing society is confronted with major challenges ranging from demographic to economic ones; challenges that necessitate highly innovative solutions, forcing us to reconsider the way that we actually innovate and create shared value. As such the linear, centralized innovation models of the past need to be replaced with new approaches; approaches that are based upon an open and collaborative, global network perspective where all innovation actors strategically network and collaborate, openly distribute their ideas and co-innovate/co-create in a global context utilizing our society's full innovation potential (Innovation 4.0 - Open Innovation 2.0). These emerging innovation paradigms create "an opportunity for a new entrepreneurial renaissance which can drive a Cambrian like explosion of sustainable wealth creation" (Curley 2013). Thus, in order to materialize this entrepreneurial renaissance, it is critical not only to value but also to actively employ this new innovation paradigms so as to derive community-driven shared value that stems from global innovation networks. This paper argues that there is a gap in existing business incubation model that needs to be filled, in that the innovation and entrepreneurship community cannot afford to ignore the emerging innovation paradigms and rely upon closed incubation models but has to adopt an "open incubation" (Ziouvelou 2013). The open incubation model is based on the principles of open innovation, crowdsourcing and co-creation of shared value and enables individual users and innovation stakeholders to strategically network, find collaborators and partners, co-create ideas and prototypes, share their ideas/prototypes and utilize the wisdom of the crowd to assess the value of these project ideas/prototypes, while at the same time find connections/partners, business and technical information, knowledge on start-up related topics, online tools, online content, open data and open educational material and most importantly access to capital and crowd-funding. By introducing a new incubation phase, namely the "interest phase", open incubation bridges the gap between entrepreneurial need and action and addresses the wantpreneurial needs during the innovation conception phase. In this context one such ecosystem that aligns fully with the open incubation model and theoretical approach, is the VOICE ecosystem. VOICE is an international, community-driven innovation and entrepreneurship ecosystem based on open innovation, crowdsourcing and co-creation principles that has no physical location as opposed to traditional business incubators. VOICE aims to tap into the collective intelligence of the crowd and turn their entrepreneurial interest or need into a collaborative project that will result into a prototype and to a successful "crowd-venture".

A Study on a Conceptualization-oriented SDSS Model for Landscape Design (조경설계를 위한 공간개념화 지향의 공간의사결정지원시스템 모델에 대한 연구)

  • Kim, Eun Hyung
    • Spatial Information Research
    • /
    • v.22 no.6
    • /
    • pp.55-65
    • /
    • 2014
  • By combining the role of current GIS technology and design behaviors from the cognitive perspective, spatial conceptualization can be extended efficiently and creatively for ill-structured problems. This study elaborates the model of a conceptualization-oriented SDSS(Spatial Decision Support System) for a landscape design problem. Current information-oriented GIS technology plays a minor role in planning and design. The three attributes in planning and design problems describe how the deficiencies of current GIS technology can be seen as a failure of the technology. These are summarized: (1) Information Explosion/Information Ignorance (2) Dilemma of Rigor and Relevance (3) Ill-structured Nature of planning and Design. In order to implement the conceptualization idea in the current GIS environment, it will be necessary to shift from traditional, information-oriented GISs to conceptualization-oriented SDSSs. The conceptualization-oriented SDSS model reflects the key elements of six important theories and techniques. The six useful theories and techniques are as follows; (1) Human Information Processing (2) Tool/Theory Interaction (3) The Sciences of the Artificial and Epistemology of Practice (4) Decision Support Systems (DSSs) (5) Human-Computer Interaction (HCI) (6) Creative Thinking. The future conceptualization-oriented SDSS can provide capabilities for planners and designers to figure out some "hidden organizations" in spatial planning and design, and develop new ideas through its conceptualization capability. The facilitation of conceptualization has been demonstrated by presenting three key ideas for the framework of the SDSS model: (1) bubble-oriented design support system (2) prototypes as an extension of semantic memory, and (3) scripts as an extension of episodic memory in a cognitive pschology perspective. The three ideas can provide a direction for the future GIS technology in planning and design.

Discussion on Formulation Process and Configuration of Fire-Fighting Vulnerable Zone Model (소방취약지 모델의 구성과 정립프로세스 논의)

  • Kim, Seong Gon;Chang, Eun Mi;Choi, Gap Yong;Kim, Hi Tae
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.71-77
    • /
    • 2014
  • There are numbers of unpredictable risk factors in the disaster scenes such as fire, explosion and fail to early life-saving or holding the flames which can lead to massive damage. In particular, fire-fighters who arrive on the scene within 5 minutes after dispatching, have a limitation to get aware to the situation of scene fully, because of immediate deploy to disaster scene with limited information. This situation may lead to disturbance that fire-fighters perform effective fire-fighting activities, to put fire-fighter's life at risk by misjudge the situation. Previous domestic and International studies focused vulnerability for spatial area or features which can damage to life and property in the event of anticipated. In this study, we have been developed fire-fighting vulnerable zone model that can analyze comprehensively hindrance factors for fire-fighting activities targeting whole life cycle of fire-fighting activities from dispatch to fire suppression or life-saving. In addition, we have been given shape to finality and applicability for our model by defining the new concept of fire-fighting vulnerable zone which can be distinguished from the concept of fire vulnerable area in previous studies. The results of this study can be used to analysis fire-fighting vulnerable zone type analysis, establish fire-fighting policies and improve the performance of decision-making process.

A Study on Zone-based Risk Analysis System using Real-time Data (실시간 데이터를 이용한 지역기반 위험분석 시스템에 관한 연구)

  • Oh, Jeong Seok;Bang, Hyo Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • Energy industry facilities can cause fatal damage for internal industry employee as well as external general people because handling various kinds of gas and harmful substance might be spread to large scale severe accident by fire, explosion, and toxic gas leakage. In order to prevent these accidents, quantification by damage effect on structure and human is tried by using quantitative risk assessment, but it is difficult to process instantly exceptional cases and requires knowledge of expert. This paper aims to minimize exceptional cases and knowledge of expert, and present risk with human perceptible. So, we designed and developed zone-base risk analysis system that can compute risk of zone in real time at that point using database and incremental model.