• Title/Summary/Keyword: explosion model

Search Result 376, Processing Time 0.034 seconds

Comparison of UNDEX Whipping Response of Hull Girder according to Modeling Methods (해석모델링 방법에 따른 선체거더의 수중폭발 휘핑응답 비교)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.631-636
    • /
    • 2005
  • One and three dimensional whipping response analyses of a naval surface combatant subjected to an underwater explosion bubble pulse were carried out to compare the efficiency and accuracy according to the modeling methods. In 1-D analysis, program UNDEXWHIP developed by KIMM was used, which is based on the thin-walled Timoshenko's beam theory and on the modal analysis method using wetted vibratory modes of the hull girder. In 3-D analysis, three finite element models were suggested using LS-DYNA/USA code, such as 3-D beam model considering geometric shape of wetted side shell, coarse and fine 3-D F.E. models. Through the comparison of results from the 1-D and 3-D analyses, it could be confirmed that 1-D analysis result is in good agreement with 3-D analysis ones, and that fine 3-D F.E. model, shock analysis one, is also used both in the shock response and whipping response analyses for the analyst effort and time savings.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

Solving Escapee-Chaser Game via Model Checking (모델 체킹을 이용한 도망자-추적자 게임 풀이)

  • Park, Sa-Choun;Kwon, Gi-Hwon
    • Journal of Korea Game Society
    • /
    • v.4 no.2
    • /
    • pp.13-20
    • /
    • 2004
  • We have been interested in solving escapee-chaser game. In this game, with avoiding chaser, the escapee must escape from given male. The winning strategies of the escapee are driving the chaser to an intended place and closely evading from chaser by using some walls. According to our experience, some stages of the game are too difficult to solve manually. So we take the model checking method to get a solution of the game. Because the model checking with breadth fist search manner exhaustively searches the all state space of the game, the solution using model checking is best solution, shortest path. Fortunately, during the process of finding solution path, the state space explosion problem didn't occur, and the results of the game solving was applied to embedded system, Lego Mindstorm. Two agents, escapee and chaser, were implemented into robots and several experiments conformed the correctness of our solution.

  • PDF

Case of Developing Analysis Model for Recoil System for Automatic Gun (자동포용 주퇴복좌장치의 해석모델 개발 사례)

  • Noh, Dae-Kyung;Kang, Young-Ky;Ji, Jae-Do;Park, Jin-Saeng;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.35-41
    • /
    • 2015
  • Recoil system for 40mm automatic gun is a device developed to absorb the shock of explosion. It is impossible to conduct pinpoint strike due to recoil if very high explosive shock, which is generated when an automatic gun fires shells, can't be absorbed. This study covers development and verification of analysis model for recoil system by utilizing a multi-domain software. The research process is as in the following. First, an analysis model is developed to verify damping characteristics through understanding of design intention. Second, environment which is identical to a field test is set up on analysis tool after putting explosive force that is measured through the test into the analysis model. Finally, the analysis model for recoil system using the multi-domain software is verified if it has effectiveness with a comparison between internal pressure of the recoil system along with displacement of gun barrel and the field test result.

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

EMGF Output Analysis Using Inductance Variation Model (인덕턴스 변화 모델을 이용한 EMGF 출력 분석)

  • Kim, Tae-Shin;Sung, In-Mo;Yang, Ji-Hyuk;You, Chun-Yeol;Kwon, Oh-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.5-11
    • /
    • 2009
  • The Explosive Magnetic Generator of Frequency (EMGF) has been studied as a method to generate a strong microwave effectively through converting the explosion powder energy into the electromagnetic energy. However, the generated high frequency electromagnetic wave has not been explained clearly yet, for it is known to be difficult to analyze the high frequency electromagnetic wave oscillation using a simple time-varying equivalent circuit model. In this paper, we analyze the problems of the widely used inductance model with an exponential decreasing pattern and investigate the tendency of a more accurate inductance variation model using the finite element method of EMGF inductance by considering the magnetic compression effect. And we have shown via an EMGF output simulation that the new inductance variation model proposed here has an negative effect on EMGF output.

Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine

  • Danish, Esmatullah;Onder, Mustafa
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.322-334
    • /
    • 2020
  • Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field can be assured if the prediction of a coal fire is carried out at an early stage. Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO, O2, N2, and temperature were used as input variables whereas fire intensity was considered as the output variable.The simulation of the model is carried out using the Mamdani inference system and run by the Fuzzy Logic Toolbox in MATLAB. Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas station points have a greater chance of causing spontaneous combustion and therefore require a precautional measure. Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham's index.

Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브의 수치해석 모델 평가)

  • KIM, CHUL-KYU;LEE, KYOUNG-KEUN;LIM, TAE-GYUN;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

An Approach for Integrated Modeling of Protein Data using a Fact Constellation Schema and a Tree based XML Model (Fact constellation 스키마와 트리 기반 XML 모델을 적용한 실험실 레벨의 단백질 데이터 통합 기법)

  • Park, Sung-Hee;Li, Rong-Hua;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.519-532
    • /
    • 2004
  • With the explosion of bioinformatics data such proteins and genes, biologists need a integrated system to analyze and organize large datasets that interact with heterogeneous types of biological data. In this paper, we propose a integration system based on a mediated data warehouse architecture using a XML model in order to combine protein related data at biology laboratories. A fact constellation model in this system is used at a common model for integration and an integrated schema it translated to a XML schema. In addition, to track source changes and provenance of data in an integrated database employ incremental update and management of sequence version. This paper shows modeling of integration for protein structures, sequences and classification of structures using the proposed system.

Consequence Analysis of Hydrogen Filling Stations based on Cascade Compressing Systems (케스케이드 방식 압축시스템 기반의 수소충전소에 대한 정성적 위험성평가)

  • Ahn, Byeong-Jun;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2021
  • Because of the recent expansion of hydrogen vehicle supply, the installation of hydrogen filling station is expected to gradually expand. This study attempts to predict the damage scale and propose a safer design form based on the scenario that assumes the worst case of a hydrogen station. A Flacs solver using computational fluid dynamics (CFD) was used to predict the damage scale, and the accuracy was verified by comparing it with the experimental results of previous researchers. The damage scale prediction was conducted for hydrogen leakage and explosion, and the prediction target was the KR model based on the measured values. And as a comparative review model, a roofless model was selected without a ceiling. As a result of analyzing the two models, it was possible to confirm the accumulation and retention of hydrogen gas up to 60 vol% or more in the KR model, whereas in the case of the Roofless model, the phenomenon of discharge and diffusion to the outside of the charging station by riding the wall after leakage. I was able to check. In conclusion, it was reviewed that the type of hydrogen charging station without ceiling is more advantageous for safety than the hydrogen filling station model.