• Title/Summary/Keyword: explosion energy

Search Result 402, Processing Time 0.033 seconds

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

Effect of Water on Continuos Spray and Flame in Emulsified Fuel made by Ultrasonic Energy (초음파 에너지로 제조된 유화연료의 수액이 분무 및 화염에 미치는 영향)

  • Lee, Seung-Jin;Ryu, Jeong-In
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2005
  • To investigate spray and combustion of emulsified fuel of W/O type, we mixed water with light oil by using ultrasonic energy adding system. We measured the SMD of sprayed droplet to find atomization characteristics of emulsified fuel with using the Malvern 2600D system. Major parameters are the weight ratio of water($0{\sim}30%$ by 10%) in emulsified fuel injection pressure(lobar), and the measurement distance($10{\sim}100mm$ by 10mm). Combustion visualizing system is made up commonly used boiler system and digital camera 1/500s to investigate combustion phenomena. As a result, the more water contents increased, the more SMD increased. The water particle of emulsified fuel made short flame in continuos spray combustion phenomena because of micro explosion.

  • PDF

Mechanism and Characteristics of Nano-dispersed Powder by Pulsed Discharge Method

  • Kwon, Young-Soon;Ilyin, Alexander P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.27-32
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed.

  • PDF

Possible Containment Failure Mechanisms in Severe Core Meltdown Accidents (중대 노심사고시 격납용기 손상유형에 대한 고찰)

  • Kang Yul Huh;Jong In Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-67
    • /
    • 1985
  • The severe core meltdown accident, which is not included as a design basis accident, has high consequence and low probability of occurrence and turns out to be a major risk factor in the overall risk assessment. The physical mechanisms of containment failure in core meltdown accidents are identified as steam explosion, debris bed coolability, hydrogen burning, steam spike and concrete interaction. The state of technology review is made for each subtopic about the previous and current researches for better understanding of the phenomenon.

  • PDF

High energy laser heating and ignition study

  • Lee, K.C.;Kim, K.H.;Yoh, J.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.525-530
    • /
    • 2008
  • We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short(femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives are used. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine(RDX), triaminotrinitrobenzene(TATB), and octahydrotetranitrotetrazine(HMX) are compared to experimental results. The experimental and numerical results are in good agreement.

  • PDF

Probabilistic Assesment of the Effects of Vapor Cloud Explosion on a Human Body (증기운 폭발이 인체에 미치는 영향에 대한 확률론적 평가)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.52-65
    • /
    • 2021
  • In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture

Effect of Oxygen Content in the Tungsten Powder Fabricated by Electrical Explosion of Wire Method on the Behavior of Spark-Plasma Sintering (전기선폭발법으로 제조된 텅스텐 분말의 산소 조성이 방전플라즈마소결 거동에 미치는 영향)

  • Kim, Cheol-Hee;Lee, Seong;Kim, Byung-Kee;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2014
  • Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at $400^{\circ}C$ for 2 hour and at $500^{\circ}C$ for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at $1200-1600^{\circ}C$ for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of $1600^{\circ}C$ for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of $95.85kJ/mol^{-1}$ was obtained, which is remarkably smaller than the reported ones of $380{\sim}460kJ/mol^{-1}$ for pressureless sintering of micron-scale tungsten powders.

Non-isothermal Decomposition Kinetics of a New High-energy Organic Potassium Salt: K(DNDZ)

  • Xu, Kangzhen;Zhao, Fengqi;Song, Jirong;Ren, Xiaolei;Gao, Hongxu;Xu, Siyu;Hu, Rongzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2259-2264
    • /
    • 2009
  • A new high-energy organic potassium salt, 2-(dinitromethylene)-1,3-diazepentane potassium salt K(DNDZ), was synthesized by reacting of 2-(dinitromethylene)-1,3-diazepentane (DNDZ) and potassium hydroxide. The thermal behavior and non-isothermal decomposition kinetics of K(DNDZ) were studied with DSC, TG/DTG methods. The kinetic equation is $\frac{d{\alpha}}{dT}$ = $\frac{10^{13.92}}{\beta}$3(1 - $\alpha$[-ln(1 - $\alpha$)]$^{\frac{2}{3}}$ exp(-1.52 ${\times}\;10^5$ / RT). The critical temperature of thermal explosion of K(DNDZ) is $208.63\;{^{\circ}C}$. The specific heat capacity of K(DNDZ) was determined with a micro-DSC method, and the molar heat capacity is 224.63 J $mol^{-1}\;K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of K(DNDZ) obtained is 157.96 s.

A study of the hazard of fire and explosion due to electric charge by Gas-Solids flow in pipeline

  • Chung Jae Hee;Seo Dae Won;Koo Ja Hyeuk;Kim Sung Jun;An Heau Seak;Kim Joon Ho;Hong Sung Kyung;YAMAGUMA Mizuki;KODAMA Tsutomu
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.33-38
    • /
    • 2000
  • When fire and explosion accidents have occurred due to a leak of the flammable gas involving the LNG & LPG in an industrialized society, it is a very important problem. Accordingly, in this paper, we have compared and analyzed the occurrence transition and the electrostatic energy according to dust supplies and pressure variations for the electric charge due to the gas-solids of pipe flow. As the experimental results, if dust amounts and the initial pressure increased, electric charge in the pipe and the exit increased. The Specific charge of $Fe_2O_3$ increased proportionally if the initial pressure increased but if the quantity of dust increased, the specific charge decreased. Energy increased significantly as the dust amounts and the initial pressure increased. The possibility of fire and explosion exist in the measuring point(M 1) and the Faraday cage if natural gas and LPG were used.

  • PDF

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.