• Title/Summary/Keyword: explosion energy

Search Result 402, Processing Time 0.025 seconds

Spontaneous Steam Explosions Observed In The Fuel Coolant Interaction Experiments Using Reactor Materials

  • Jinho Song;Park, Ikkyu;Yongseung Sin;Kim, Jonghwan;Seongwan Hong;Byungtae Min;Kim, Heedong
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.344-357
    • /
    • 2002
  • The present paper reports spontaneous steam explosions observed in fuel coolant interaction experiments using prototypic reactor materials. Pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$ are used. A high temperature molten material in the form of a jet is poured into a subcooled water pool located in a pressure vessel. An induction skull melting technique is used for the melting of the reactor material. In both tests using pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$, either a quenching or a spontaneous steam explosion was observed. The morphology of debris and pressure profile clearly indicate the differences between the qunching cases and explosion cases. The dynamic pressure. dynamic impulse, water temperature, melt temperature, and static pressure Inside the containment chamber were measured . As the spontaneous steam explosion for the reactor material is firstly observed in the present experiments, the results of present experiments could be a siginificant step forward the understanding the explosion of the reactor material.

On the Characteristics of Sludge Combustion for Developing Safe and Reusable Energy (슬러지 연소 특성을 통한 신재생에너지의 안전성 연구)

  • Park, Kyong-Jin;Yoh, Jai-Ick;Yoon, Hee-Chul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.42-45
    • /
    • 2006
  • A new and reusable energy source is water-treatment sludges. There is a significant need for understanding the characteristics of sludge combustion related to improving efficiency and ensuring the safety of this new energy source. Because sludges are composed of solids and gas mixture, the combustion of the mixture may become quite complex. Not only decomposition of conventional organic elements but also dust explosion may be important during the process of converting sludges into a new and safe form of energy. Sludge combustion mainly involves hydrogen, methane, hydro carbons, carbon, and organic particles. Dust explosion during the gasification stage may depend on the surrounding temperature and the composition of gases. The uncertainty in the explosive behavior of energetic source is noted in this work. We study the explosion characteristics of sludge combustion while the reusability of sewage sludges as a new form of energy is also investigated.

  • PDF

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions (가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰)

  • Minju Kim;Jeewon Lee;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.73-92
    • /
    • 2023
  • With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

A Study on Dust Explosion Characteristics of Hydroxypropyl Methyl Cellulose (Hydroxypropyl Methyl Cellulose의 분진 폭발특성에 관한 연구)

  • 임우섭;목연수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.95-100
    • /
    • 2000
  • This study was performed in Hartmann type dust explosion apparatus in order to research the dust explosion characteristics of hydroxypropyl methyl cellulose(HPMC): minimum explosive limit, minimum ignition energy, limiting oxygen concentration, maximum explosion pressure, rate of pressure rise, etc. The samples of HPMC dust were distributed into 120-140 mesh, 170-230 mesh and 325 under, and the gap distance of the discharge electrode was setted up at 5mm. The experimental results were obtained as follows: (1) The minimum explosive limit for HPMC dust was founded at 180g/㎥. the minimum ignition energy at 9.8mJ and the limiting oxygen concentration at 12%. (2) The maximum explosion pressure of HPMC dust was $8.1kg/cm^2\;{\cdot}\;$abs at the concentration of $500g/m^3$ and the maximum rate of pressure rise was 203.98 bar/sec at the concentration of $480g/m^3$ for 325 under.

  • PDF

Explosion-proof Properties of High Strength Steel Fiber Reinforced Concrete made with Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • Han, Cheon-Goo;Kim, Seong-Soo;Park, Goo-Byeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.129-136
    • /
    • 2000
  • In the side of military purpose, the explosion proof concrete, which contributes to protect the military facilities from damages due to the explosion of bomb and to maintain their shapes, is required to develop, Therefore. in this paper, mechanical and explosion-proof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength gain higher levels with an increase in fiber contents. It shows that energy bearing capacities are higher with an increase in fiber contents. Especially. it is confirmed that slurry infiltrated fiber concrete(SIFCON) gains high strength and has high energy bearing capacities. SIFCON is expected to be applied in the construction of explosion proof structures.

  • PDF

PARAMETER DEPENDENCE OF STEAM EXPLOSION LOADS AND PROPOSAL OF A SIMPLE EVALUATION METHOD

  • MORIYAMA, KIYOFUMI;PARK, HYUN SUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.907-914
    • /
    • 2015
  • The energetic steam explosion caused by contact between the high temperature molten core and water is one of the phenomena that may threaten the integrity of the containment vessel during severe accidents of light water reactors (LWRs). We examined the dependence of steam explosion loads in a typical reactor cavity geometry on selected model parameters and initial/boundary conditions by using a steam explosion simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA). Among the parameters, we put an emphasis on the water pool depth that has significance in terms of accident mitigation strategies including cavity flooding. The results showed a strong correlation between the load and the premixed mass, defined as the mass of the molten material in low void zones (void fraction < 0.75). The jet diameter and velocity that comprise the flow rate were the primary factors to determine the premixed mass and the load. The water pool depth also showed a significant impact. The energy conversion ratio based on the enthalpy in the premixed mass was in a narrow range ~4%. Based on this observation, we proposed a simplified method for evaluation of the steam explosion load. The results showed fair agreement with JASMINE.

SEINA: A two-dimensional steam explosion integrated analysis code

  • Wu, Liangpeng;Sun, Ruiyu;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3909-3918
    • /
    • 2022
  • In the event of a severe accident, the reactor core may melt due to insufficient cooling. the high-temperature core melt will have a strong interaction (FCI) with the coolant, which may lead to steam explosion. Steam explosion would pose a serious threat to the safety of the reactors. Therefore, the study of steam explosion is of great significance to the assessment of severe accidents in nuclear reactors. This research focuses on the development of a two-dimensional steam explosion integrated analysis code called SEINA. Based on the semi-implicit Euler scheme, the three-phase field was considered in this code. Besides, the influence of evaporation drag of melt and the influence of solidified shell during the process of melt droplet fragmentation were also considered. The code was simulated and validated by FARO L-14 and KROTOS KS-2 experiments. The calculation results of SEINA code are in good agreement with the experimental results, and the results show that if the effects of evaporation drag and melt solidification shell are considered, the FCI process can be described more accurately. Therefore, it is proved that SEINA has the potential to be a powerful and effective tool for the analysis of steam explosions in nuclear reactors.

A Study on the Explosion Limit and Explosion Characteristics of Flammable Vapor (가연성증기의 폭발한계 및 폭발특성에 관한 연구)

  • 김영수;이민세;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.

  • PDF

An Experimental Study on Explosion Characteristics of Terephtalic Acid (Terephtalic Acid의 폭발특성에 관한 실험적 연구)

  • 오규형;문정기;김한석
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.41-48
    • /
    • 1990
  • In this study the explosion characteristics of terephtalic acid dust(PTA) was investigated with the Hartmann type apparatus. The minimum ignition energy, minimum explosible concentration, flame propagation velocity, explosion pressure, explosion pressure rise rate and the effect of inert dust(talcum) on explosion characteristics were measured. Flame velocity was 50m/s at 700g/m$^3$ concentration, and the explosion pressure and explosion pressure rise rate were most likely with that of gas explosion. It was found that an inert dust acts as a heat sinker and it disturbs the combustion of flammable dust, as a result, explosion pressure and explosion pressure rise rate were decreased and minimum explosion concentration was increased with increasing the fraction of talcum dust in PTA.

  • PDF

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.