• 제목/요약/키워드: explosion characteristics

검색결과 359건 처리시간 0.03초

Terephtalic Acid의 폭발특성에 관한 실험적 연구 (An Experimental Study on Explosion Characteristics of Terephtalic Acid)

  • 오규형;문정기;김한석
    • 한국안전학회지
    • /
    • 제5권1호
    • /
    • pp.41-48
    • /
    • 1990
  • In this study the explosion characteristics of terephtalic acid dust(PTA) was investigated with the Hartmann type apparatus. The minimum ignition energy, minimum explosible concentration, flame propagation velocity, explosion pressure, explosion pressure rise rate and the effect of inert dust(talcum) on explosion characteristics were measured. Flame velocity was 50m/s at 700g/m$^3$ concentration, and the explosion pressure and explosion pressure rise rate were most likely with that of gas explosion. It was found that an inert dust acts as a heat sinker and it disturbs the combustion of flammable dust, as a result, explosion pressure and explosion pressure rise rate were decreased and minimum explosion concentration was increased with increasing the fraction of talcum dust in PTA.

  • PDF

가연성 가스의 폭발특성에 대한 연구 (A Study on The Explosion Characteristics of Flammable Gases)

  • 오규형;김한석;이춘하
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.66-72
    • /
    • 1992
  • An experimental study was carried out to analyse the explosion characteristics of flammable gas-air mixtures. Used flammable gases were hydrogen, methane, acethylene, ethylene and pro-pane, explosion Pressure, explosoin pressure rising rate, and flame propagation velocity were measured experimentaly. The maximum explosion pressure and rising rate of flammmalbe gas air mixtures were appeared at the range of slightly higher concentration than the stoichiometric concentration. Initial pressure before explosion was controlled from 0.6 to 2.0kg/cm absolutly. Explosion pressure was increased with increment of the initial pressure, and the relationship between initial pressure and explosion pressure was Pe = KPi. The effect of vessel size on explosion characteristics was also analysed In this experiment. Explosion pressure was increased with in-creasing the vessel size, otherwise explosion pressure rising rate was decreased. When we locate a dummy material in vessel explosion pressure was decreased with increasing the dummy volume but exlosion pressure rising rate was increased.

  • PDF

수소의 폭발 특성에 관한 연구 (A Study on the Explosion Characteristics of Hydrogen)

  • 오규형;이광원
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.228-234
    • /
    • 2004
  • It was discussed about explosion danger of hydrogen gas experimentally that could be happen during the handling and using. Hydrogen concentration was varied from 10 to 60 vol% for get the explosion characteristics of hydrogen and 5 kinds of cylindrical vessel were used to find the explosion characteristics of hydrogen according to the vessel volume. Initial pressure of hydrogen-air mixture was varied from 0.6 to 2 kg/cm2. Based on the experiment, explosion pressure was most high near the 30vol% of hydrogen and explosion pressure was increased slightly according to the increase of vessel volume but explosion pressure rise rate was decreased. Explosion pressure was increased linearly proportional to the initial pressure of gas mixture.

효과적인 VFX 수중 폭발효과 구현을 위한 유체 시뮬레이션 제어 (Fluid Simulation Control for Effective VFX Underwater Explosion Effects)

  • 황민식;이현석
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1606-1618
    • /
    • 2017
  • The explosion effect of computer graphics Visual Effects(VFX) used in films and animations is an important element that determines the completeness of the film, and its usage is getting extended. The realistic explosion effect of VFX should be made according to observations and analysis of various factors of actual explosion in real world. This experimental research would suggest the efficient production guideline for the technical characteristics of underwater explosion of VFX. For this research process, first, the comparison of actual explosion and VFX explosion effect, classification of actual explosion, and characteristics of underwater explosion effect will be addressed. Second, based on the literature reviews, the four steps of experimental production analysis tool will be derived. Third, the experimental research will be processed in along with technical factors four steps of the underwater explosion effect, (1)realistic creation and emission of fluid, (2)fluid expansion control by water pressure, (3)bubble effect, and (4)motion of bubble & dissipation of fluid. The effective method of fluid simulation production will be verified through experimental studies based on the characteristics of the actual explosion process. This experimental study suggested the VFX production technique is expected to be used as the basic data for related research field.

가연성증기의 폭발한계 및 폭발특성에 관한 연구 (A Study on the Explosion Limit and Explosion Characteristics of Flammable Vapor)

  • 김영수;이민세;신창섭
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.116-121
    • /
    • 1998
  • Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.

  • PDF

농도 불균일 LPG-공기 혼합기체의 폭발특성 (Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures)

  • 배정일;김영수;서용칠;신창섭
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

가스 혼합물의 폭발압력과 연소열의 상관관계 연구 (A Study on the Relationship of Explosion Characteristics and Combustion Heat of Gas Mixtures)

  • 오규형;김홍;유주현;김태진
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.49-55
    • /
    • 1997
  • 폭발압력은 가연성 혼합가스의 폭발시 발생되는 에너지의 변환형태로 가스폭발 사고시 구조물의 파괴와 피해는 주로 폭발압력과 열에 의해 발생한다. 본 연구에서는 몇 종류의 탄화수소와 산소의 혼합물에 대하여 폭발특성과 폭발연소시 발생되는 에너지와의 관계를 규명하고자 하였다. 폭발실험 용기는 L/D가 1이고 부피가 $5916cm^3$인 원주형 용기를 사용하였으며 폭발압력은 strain형 압력센서를 사용하여 오실로스코프로 측정하였다. 실험에 사용된 탄화수소는 메탄, 에틸렌, 프로판, 부탄이었으며 실험의 변수로는 산화제인 산소와의 혼합기의 농도 변화이었다. 실험결과 폭발압력은 연소열에 강한 의존성을 갖고 있음을 알 수 있었으며 이 관계를 이용하여 연소특성으로부터 폭발압력의 예측이 가능할 것으로 생각된다.

  • PDF

AUTODYN을 이용한 LNG 폭발 사고 위력 평가에 관한 법공학적 연구 (A Forensic Engineering Study on Evaluation of Explosive Pressure and Velocity for LNG Explosion Accident using AUTODYN)

  • 김의수;김종혁;심종헌;김진표;고재모;박남규
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.56-63
    • /
    • 2015
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LNG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LNG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LNG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LNG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LNG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure's destruction and damage behavior.

원료의약품 분진의 폭발 위험성 평가 (Hazard Assesment of Dust Explosion Pharmaceutical Raw Material Powders)

  • 김원성;이근원;우인성;전상용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.39-44
    • /
    • 2018
  • Dust explosions are occurring in a variety of industries. A dust explosion caused by a specific energy generates huge amount of energy in the ignition and releases decomposition gas. Damages can be increased since this released decomposition gas can cause second and subsequent explosions. In this study, the goal was to obtain practical information on what could affect the explosion by comparing the characteristics of two kinds of dusts with completely different chemical properties. Three kinds of dusts were measured and evaluated for explosion pressure, dust explosion index, explosion limit and minimum ignition energy. It is possible to grasp the characteristics of each dust and use it as useful accident prevention data in the production of raw material powder.

A study on the pressure behaviour during the rupture by gas explosion

  • Kim, Min-Kyu;Oh, Kyu-Hyung;Kim, Hong
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.275-281
    • /
    • 1997
  • The destruction by accident is affected by the blast of explosion. However, there are few of research on the external effect of vented gas explosions. Therefore it is necessary to study the effect of vented explosion. This study aims to find the characteristics of gas explosion, and the effect of vented gas explosion. Using an explosion chamber, we obtained a LPG explosion characteristics according to the vent size and concentration. The result of experiment showed that the explosion pressure effect to external space was much stronger than inner space during the course of a gas explosion. And the external pressure become higher in explosion pressure as the vent diameter become smaller.

  • PDF