The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.571-576
/
2024
Ontologies are created by domain experts, but the same content may be expressed differently by each expert due to different understandings of domain knowledge. Since the ontology standardization is still lacking, multiple ontologies can be exist within the same domain, resulting in a phenomenon called the ontology heterogeneity. Therefore, we propose a novel ontology matching method that combines SCBOW(: Siames Continuois Bag Of Words) and BERT(: Bidirectional Encoder Representations from Transformers) models to solve the ontology heterogeneity issue. Ontologies are expressed as a graph and the SimRank algorithm is used to solve the one-to-many problem that can occur in ontology matching problems. Experimental results showed that our approach improves performance by about 8% over traditional matching algorithm. Proposed method can enhance and refine the alignment technology used in ontology matching.
Kim, Sunghwan;Choi, Jeongmin;Kim, Tae Han;Kong, Seong-Ho;Suh, Yun-Suhk;Im, Jong Pil;Lee, Hyuk-Joon;Kim, Sang Gyun;Jeong, Seung-Yong;Kim, Joo Sung;Yang, Han-Kwang
Journal of Gastric Cancer
/
v.16
no.3
/
pp.167-176
/
2016
Purpose: The purpose of this study was to determine the effect of a prior gastrectomy on the difficulty of subsequent colonoscopy, and to identify the surgical factors related to difficult colonoscopies. Materials and Methods: Patients with a prior gastrectomy who had undergone a colonoscopy between 2011 and 2014 (n=482) were matched (1:6) to patients with no history of gastrectomy (n=2,892). Cecal insertion time, intubation failure, and bowel clearance score were compared between the gastrectomy and control groups, as was a newly generated comprehensive parameter for a difficult/incomplete colonoscopy (cecal intubation failure, cecal insertion time >12.9 minutes, or very poor bowel preparation scale). Surgical factors including surgical approach, extent of gastrectomy, extent of lymph node dissection, and reconstruction type, were analyzed to identify risk factors for colonoscopy performance. Results: A history of gastrectomy was associated with prolonged cecal insertion time ($8.7{\pm}6.4$ vs. $9.7{\pm}6.5$ minutes; P=0.002), an increased intubation failure rate (0.1% vs. 1.9%; P<0.001), and a poor bowel preparation rate (24.7 vs. 29.0; P=0.047). Age and total gastrectomy (vs. partial gastrectomy) were found to be independent risk factors for increased insertion time, which slowly increased throughout the postoperative duration (0.35 min/yr). Total gastrectomy was the only independent risk factor for the comprehensive parameter of difficult/incomplete colonoscopy. Conclusions: History of gastrectomy is related to difficult/incomplete colonoscopy performance, especially in cases of total gastrectomy. In any case, it may be that a pre-operative colonoscopy is desirable in selected patients scheduled for gastrectomy; however, it should be performed by an expert endoscopist each time.
Korean Journal of Construction Engineering and Management
/
v.19
no.3
/
pp.97-104
/
2018
This paper aims to evaluate the performance of S University's Premier Global Construction Engineer Training Program. The net impact of the program is evaluated through a quasi-experiment design approach. The competency level of an individual participant is compared with that of a non-participating expert with similar professional background. The results show that the training program contributed to a significant improvement in the professional competencies of the participating students. The competency level was regressed on the subjects of curriculum. The achievements are attributable to a group of subjects focused on the skills for project development such as PPP, feasibility study, and project financing. Another group of subjects found to have significantly contributed to the improved competencies can be categorized as subjects focused on nurturing global perspectives. The paper shows it is possible to quantify the contribution of the program and the results provide a set of information that can be useful in designing and operating similar programs.
Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.
Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.6
/
pp.2529-2539
/
2013
The Korean construction industry has led the miraculous economic boost of Korea by providing solid domestic infrastructures such as highway, roads, and airports. It also played a critical role in global construction market and eaned more than 500 billions dollars in terms of their accumulated international orders. However, domestic construction market has significantly decreased in recent years due to the domestic political environments and global economic crisis. Therefore, the importance of international construction market cannot be more emphasized to the Korean construction market in order for the sustainable growth. There has been, however, little research in the area of identifying required competency elements for the Korean construction industry to stay successful in the global market. The main purpose of this study is to identify elements of core competency to increase global competitiveness for Korean construction industry. Core global construction competency elements were derived from the internal and external environmental analyses along with the extensive literature review, expert interviews and a survey. This study utilized the Importance-Performance Analysis (IPA) and a gap analysis in providing insights on the status competitiveness of the Korean construction industry in terms of required global core competency elements. The analysis shows that project management and financial management are the main areas for improvements required to engineering contractors while construction contractors need to take a more balanced approach among technical, project management, and financial management in order to increase their global competencies.
Chanho Kim;Minshick Choi;Chonghyo Joo;A-Reum Lee;Yun Gun;Sungho Cho;Junghwan Kim
Korean Chemical Engineering Research
/
v.62
no.3
/
pp.214-224
/
2024
Valves play an essential role in a chemical plant such as regulating fluid flow and pressure. Therefore, optimal selection of the valve size and type is essential task. Valve size and type have been selected based on theoretical formulas about calculating valve sizing coefficient (Cv). However, this approach has limitations such as requiring expert knowledge and consuming substantial time and costs. Herein, this study developed a model for predicting valve sizes and types using machine learning. We developed models using four algorithms: ANN, Random Forest, XGBoost, and Catboost and model performances were evaluated using NRMSE & R2 score for size prediction and F1 score for type prediction. Additionally, a case study was conducted to explore the impact of phases on valve selection, using four datasets: total fluids, liquids, gases, and steam. As a result of the study, for valve size prediction, total fluid, liquid, and gas dataset demonstrated the best performance with Catboost (Based on R2, total: 0.99216, liquid: 0.98602, gas: 0.99300. Based on NRMSE, total: 0.04072, liquid: 0.04886, gas: 0.03619) and steam dataset showed the best performance with RandomForest (R2: 0.99028, NRMSE: 0.03493). For valve type prediction, Catboost outperformed all datasets with the highest F1 scores (total: 0.95766, liquids: 0.96264, gases: 0.95770, steam: 1.0000). In Engineering Procurement Construction industry, the proposed fluid-specific machine learning-based model is expected to guide the selection of suitable valves based on given process conditions and facilitate faster decision-making.
Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
Journal of Intelligence and Information Systems
/
v.20
no.3
/
pp.109-131
/
2014
As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.
Actual condition by items based on the level of execution of Construction Company certified by Construction Safety and Health Management Systems (KOSHA 18001) was investigated, analyzed and evaluated reflecting various opinions fincluding safety experts, top management, audit experts, and construction engineers. Currently, the maintenance is being managed through internal audit after the safety and health management system has been certified, but it is difficult to identify the degree of continuous improvement. In order to present the standards to see the level of quantified system, this study was conducted. The purpose of this study is to present the system maturity evaluation tool to be used to reduce occupational accidents through proper establishment and continuous improvement of national health and safety management system. Results of this study are summarized through identification of current condition of implementation of KOSHA 18001 system, development of maturity measurement tool and verification as follows: First, priority of implementation for activities of headquarters and on-site was determined by importance of activities such as the risk assessment, safety and health accident prevention activities, performance assessment and monitoring, resource management and support, and management review and improvement in order. In addition, the expert group presented that association with continuous improvement activities could establish the system by presenting strengths, weaknesses and improvement subjects of system.
Journal of the Korean Recycled Construction Resources Institute
/
v.9
no.3
/
pp.303-310
/
2021
Cracks in bridges are important factors that indicate the condition of bridges and should be monitored periodically. However, a visual inspection conducted by a human expert has problems in cost, time, and reliability. Therefore, in recent years, researches to apply a deep learning model are started to be conducted. Deep learning requires sufficient data on the situations to be predicted, but bridge crack data is relatively difficult to obtain. In particular, it is difficult to collect a large amount of crack data in a specific situation because the shape of bridge cracks may vary depending on the bridge's design, location, and construction method. This study developed a crack detection model that generates and trains insufficient crack data through a Generative Adversarial Network. GAN successfully generated data statistically similar to the given crack data, and accordingly, crack detection was possible with about 3% higher accuracy when using the generated image than when the generated image was not used. This approach is expected to effectively improve the performance of the detection model as it is applied when crack detection on bridges is required, though there is not enough data, also when there is relatively little or much data f or one class.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.