• 제목/요약/키워드: experimental validation

검색결과 1,301건 처리시간 0.027초

직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증 (Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations)

  • 강경문;고요한;이기용;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

미지정수 후보 타당성 검정 기법간의 비교 분석 (A Comparative Analysis of Performance of Ambiguity Validation Methods)

  • 고재영;신미영;한영훈;조득재
    • 한국항해항만학회지
    • /
    • 제39권1호
    • /
    • pp.15-21
    • /
    • 2015
  • GNSS를 이용한 정밀측위에서 미지정수 결정은 가장 중요한 과정이다. 정확한 미지정수를 추정하는 경우에는 수 mm에서 수 cm의 정밀한 측위결과를 가져오지만 부정확한 미지정수를 사용하는 경우에는 측위결과의 정확도와 정밀도를 보장할 수가 없다. 미지정수 결정은 IR(Integer Rounding), IB(Integer Bootstrapping), ILS(Integer Least Squares) 등의 기법을 기반으로 수행할 수 있다. 이중에서 ILS는 이론적, 실험적으로 가장 좋은 성능을 보여준다. 하지만 다른 기법들과 달리 ILS는 미지정수에 대한 후보를 검색하기 때문에 올바른 미지정수를 판단하기 위한 타당성 검정이 필요하다. 본 논문에서는 타당성 검정 기법간의 실험적인 비교 분석을 수행한다. 실험에는 타당성 검정 기법으로 자주 쓰이는 R-ratio, F-ratio, W-ratio가 사용되었다. 각 타당성 검정 기법의 성능을 정상동작, 검출, 미검출, 오검출로 나누어 평가하였다. 실험결과로 각 타당성 검정 기법의 장단점이 분명하게 나타났으며, 이를 통해 적용환경에 따라 기법이 선택되어야 함을 확인하였다.

카메라영상에 의한 DGPS-GIS기반 차선변경 지원시스템의 평가 및 신뢰성 검증 (Assessment and Reliability Validation of Lane Departure Assistance System Based on DGPS-GIS Using Camera Vision)

  • 문상찬;이순걸;김민우;주다니
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.49-58
    • /
    • 2014
  • This paper proposes a new assessment and reliability validation method of Lane Departure Assistance System based on DGPS-GIS by measuring lanes with camera vision. Assessment of lane departure is performed with yaw speed measurement and determination method for false alarm of ISO 17361 and performance validation is executed after generating departure warning boundary line by considering deviation error of LDAS using DGPS. Distance between the wheel and the lane is obtained through line abstraction using Hough transformation of the lane image with camera vision. Evaluation validation is obtained by comparing this value with the distance obtained with LDAS. The experimental result shows that the error of the extracted distance of the LDAS is within 5 cm. Also it proves performance of LDAS based on DGPS-GIS and assures effectiveness of the proposed validation method for system reliability using camera vision.

현가장치 소음 발생인자 평가를 통한 부품소음 검증시험 최적화 (Optimization for Component Noise Validation Test by Evaluation of Noise Control Factors for Suspension)

  • 손명군;이태용;이상복;이슬
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.344-349
    • /
    • 2017
  • Suspension noise from under a passenger car is one of the important factors that impact the perceptual quality for drivers. However, it is difficult to validate this by component level testing in the early stage of development, because suspension noise caused by interaction of the related parts has been found at saleable vehicles late during development or at the manufacturing stage, when many customers have already filed for claims. This study proposed a validation testing under research by the DFSS process that enables reproduction of vehicle level noise by component level testing using a shock absorber with the related parts, such as urethane bumper and top mount. This study also developed a compromised test matrix while analyzing the noise factors through experimental design and analysis of variance to determine what factors can affect noise. Based on this study, we expect that the vehicle level and customer claim can be validated during initial development timing by a more reliable component noise validation test.

VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

  • Tak, Nam-Il;Kim, Min-Hwan;Lim, Hong-Sik;Noh, Jae Man;Drzewiecki, Timothy J.;Seker, Volkan;Downar, Thomas J.;Kelly, Joseph
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.745-752
    • /
    • 2013
  • For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR), intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI) and the AGREE code of the University of Michigan (U of M). One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU) in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

A computational framework for drop time assessment of a control element assembly under fuel assembly deformations with fluid-structure interaction and frictional contact

  • Dae-Guen Lim;Gil-Yong Lee;Nam-Gyu Park;Yong-Hwa Park
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3450-3462
    • /
    • 2024
  • This paper presents a computational framework for drop time assessment of a control element assembly (CEA) under fuel assembly (FA) deformations. The proposed framework consists of three key components: 1) finite element modeling of CEA, 2) fluid-structure interaction to compute drag force, and 3) modeling of frictional contact between CEA and FA. Specially, to accommodate the large motion of CEA, beam elements based on absolute nodal coordinate formulation (ANCF) are adopted. The continuity equation is utilized to calculate the drag force, considering flow changes in the cross-sectional area during the CEA drop. Lastly, beam-inside-beam frictional contact model is employed to capture practical contact conditions between CEA and FA. The proposed framework is validated through experiments under two scenarios: free falls of CEA within FA, encompassing undeformed and deformed scenarios. The experimental validation of the framework demonstrated that the drop time of CEA can be accurately predicted under the complex coupling effects of fluid and frictional contact. The drop times of the S-shaped deformation case is longer than those of the C-shaped deformation case, affirming the time delay due to frictional force. The validation confirms the potential applicability to access the safety and reliability of nuclear power plants under extreme conditions.

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권4호
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF