This paper reports the results of a study to elicit willingness to pay (WTP) for changes in health risks from exposure to As, Pb, THM in tap water using experimental market method. The experimental market method, compared with other non-market valuation methods, allows us to use incentive compatible demand revealing scheme, to acquire market-like experience through repetitive auctions, and to incorporate learning process by providing new information during the session. Participants seemed to utilize the objective risk information in a 'rational' manner, and to change their WTP bids accordingly. Moreover they were able to reduce the 'ambiguity' in risk perception processes when objective risk probabilities provided are quite different from their subjective perceptions. Nonetheless, anchoring effects appeared to be still persistent in spite of market-like experience and learning opportunity. And implicit values entailed by WTP bid/risk tradeoffs indicate a wide variation in values across alternative risk reductions and overrated responses to very small risk reductions.
Purpose - This study analyzes the effect of sellers' dishonesty on various market outcomes such as seller profit, buyer profit, and market welfare, through precisely measuring the level of sellers' information disclosure and its economic impacts. As an explicit observation of sellers' dishonesty is not easy in most other settings, this study is expected to suggest unique and meaningful implications on the effect of sellers' incomplete information disclosure to researchers, managers, and policy makers. Design/methodology/approach - In order to precisely measure the level of sellers' dishonesty under information asymmetry, this study analyzes the data from an incentive-based economic experiment using z-Tree software. This experimental method enables us to focus on the strategic interactions among participants, observe the integrity of seller's information disclosure, and reproduce real market situations. Findings - The analysis of sellers' dishonesty has provided the following important and counterintuitive findings about the reality of buyer-seller interactions under information asymmetry. First, sellers' lies do not affect seller profit even when they are very intensive. Second, sellers' dishonesty negatively affects buyer profit and the entire market welfare. Third, a seller's quality claim has a positive effect on the seller profit only when a seller is being honest. Research implications or Originality - This study analyzes sellers' dishonesty using incentive-based economic experiment using z-Tree software which provides a straightforward examination on dishonest behavior of sellers, that is not readily available with other types of observational or experimental data.
The Journal of Asian Finance, Economics and Business
/
제8권1호
/
pp.53-59
/
2021
This research aims to examine the model of investor herding behavior in making investment decisions in the Indonesian capital market, which is influenced by social and information impacting on the value of the Book Value Per Share (BVPS). The latest stock market conditions show that most investors make the same error pattern in making investment decisions that result in losses. The experiment involves two independent variables, namely, information about BVPS and social influence. This study used a 2×2 factorial design laboratory experimental method. Data collection was carried out through treatment of a sample of 100 individual investors listed on the Indonesia Stock Exchange. Univariate Two-Way Analysis of Variance (ANOVA) statistical tool was used to test the independent variable on the dependent variable. Research results showed that the social influence originating from expert investors is more influential than the Book Value Per Share (BVPS) information on the behavior of herding investors in making investment decisions. These findings suggest that investors know their psychological factors, thereby increasing self-control and investment analysis skills. Further research can use psychological bias and other indicators of accounting relevant information such as Earning Per Share (EPS) to test herding behavior in investment decision making in the capital market.
Purpose - The purpose of this study is to apply a cost effective ultrasonic odor reduction method that generated micro-bubbles using ejector to the Southeast Asian wastewater market. Research design, data, and methodology - A leather maker located in Ansan-city, Gyunggi-do, South Korea was sampled from the collection tank to select experimental materials. Experimental setup consisted of circulating water tank-air ejector-ultrasonic device, and circulating wastewater. Sample analysis was performed by CODcr, T-N, T-P, and turbidity by the National Environmental Science Institute. Results - Experimental results show that it is most effective in removing odors when the frequency range of ultrasonic wave is 60~80 Khz and the output is 200 W. It showed that the concentration of complex odor dropped from a maximum of 14,422 times to a minimum of 120 times. Also, analysis of ammonia and hydrogen sulfide in specific odor substances has shown that they were reduced from 1.5 ppm to 0.4 ppm and from 0.6 ppm to 0.1 ppm, respectively. Conclusions - It is possible to shorten more than 12 hours in the treatment of micro-organisms. It can be seen that the processing time of odor after ultrasonic treatment in the pre-treatment facility is reduced by 25% when compared to the resultant micro-organisms after the chemical treatment, that is, the time of the bio-treatment of micro-organisms. Based on the results, it was confirmed that the pre-treatment method using the ultrasonic and the air ejector device of the experiment shows the effect of reducing the water pollutants and odor more effectively in a relatively short time than the conventional advanced oxidation method.
비시장재의 변화에 의한 후생변화 측정치로서 쓰이는 지불의사(WTP)와 수용의사(WTA) 개념은 경제이론적으로는 소득효과가 크지 않다면 서로 크게 다르지 않을 것이라고 예측되고 있다. 그러나 실증분석결과들은 WTA 측정치가 WTP의 측정치보다 훨씬 큰 것으로 관찰되고 있다. 본 연구는 우리나라에서는 처음으로 실험시장접근법을 사용하여 비시장재의 하나인 먹는 물에 잔류가능성이 있는 유해물질(비소, 납, 트리할로메탄 중의 하나)로부터의 건강위험변화에 대한 WTP와 WTA를 측정하고 이 두 측정치에 차이가 존재하는지 실증적으로 분석하였다. 대학생들 15명씩의 참가자들을 대상으로 총 여섯 번의 실험시장을 개설하였다. 시장거래경험의 유무에 따른 차이를 검증하고자 사적 시장재인 캔디바 실험경매도 도입하였고, 반복경험에 따른 학습효과를 관찰하기 위하여 20번의 실험경매를 시도하였고, 정보제공효과를 관찰하기 위하여 10번째 경매 후에 객관적 건강위험에 관한 확률정보를 제공하였다. 시장재 비시장재의 구분없이 첫 번째 실험경매에서는 WTA가 통계적으로 유의하게 WTP를 초과하였다. 실험경매가 진행됨에 따라 사적 시장재는 WTA와 WTP의 차이가 사라지고 시장평균가격에 수렴하였다. 그러나 비시장재인 건강위험변화에 대한 결과는 혼재되어 있었다. 건강위험이 가장 큰 비소에 대해서는 건강위험 감소에 대한 WTP가 건강위험 증가에 대한 WTA보다 통계적으로 유의하게 적었다. 반면에 건강위험이 상대적으로 적은 납과 트리할로메탄에 대해서는 WTP와 WTA의 평균이 같다는 귀무가설을 기각할 수 없었다. 실험참가자들은 실험경매 중간에 제공된 건강위험정보에 대해 합리적으로 반응하였고, 실험경매가 진행됨에 따라 경험획득에 의한 학습효과도 긍정적이었다. WTP는 실험 초반에 학습효과가 주로 관찰된 반면에 WTA 측정치는 실험경매 후반에 학습효과가 관찰되었다.
A lot of researches have been conducted to estimate the volatility smile effect shown in the option market. This paper proposes a method to approximate an implied volatility function, given noisy real market option data. To construct an implied volatility function, we use Gaussian Processes (GPs). Their output values are implied volatilities while moneyness values (the ratios of strike price to underlying asset price) and time to maturities are as their input values. To show the performances of our proposed method, we conduct experimental simulations with Korean Equity-Linked Warrant (ELW) market data as well as toy data.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권10호
/
pp.2809-2821
/
2023
Effective recommendation of similar business groups is a critical factor in obtaining market information for companies. In this study, we propose a novel method for enhancing similar business group recommendation by incorporating derivative criteria and web crawling. We use employment announcements, employment incentives, and corporate vocational training information to derive additional criteria for similar business group selection. Web crawling is employed to collect data related to the derived criteria from 'credit jobs' and 'worknet' sites. We compare the efficiency of different datasets and machine learning methods, including XGBoost, LGBM, Adaboost, Linear Regression, K-NN, and SVM. The proposed model extracts derivatives that reflect the financial and scale characteristics of the company, which are then incorporated into a new set of recommendation criteria. Similar business groups are selected using a Euclidean distance-based model. Our experimental results show that the proposed method improves the accuracy of similar business group recommendation. Overall, this study demonstrates the potential of incorporating derivative criteria and web crawling to enhance similar business group recommendation and obtain market information more efficiently.
여러 오픈마켓에서 판매자가 동일한 상품을 등록할 시에 각 오픈마켓마다 다른 기준으로 제공되는 카테고리로 인하여 카테고리 선정에 어려움이 발생한다. 본 논문에서는 판매자가 오픈마켓에서 상품 등록 시 다른 오픈마켓에서 기 판매하고 있는 상품의 카테고리와 의미적으로 가장 연관성이 높은 카테고리를 추천하는 방법을 제안한다. 이때 입력받은 카테고리를 의미 분석하는 방법으로 형태소 분석, Wiki 낱말사전, WordNet, Google 번역 서비스를 사용하여 추출된 색인어로 카테고리를 검색한 후, 의미적 연관성 측정을 통하여 가장 의미가 비슷한 카테고리를 추천하는 방법이다. 실험 결과로 색인어 기반의 검색방법 보다 제안하는 의미분석 검색방법이 정확한 검색결과를 보여주어 시스템의 신뢰도를 향상시켰으며, 카테고리를 선택하는데 드는 시간비용을 절감해주는 것을 보인다.
Internet-based electronic trade has been growing fast. But most users are not yet familiar with the system and find it very difficult to purchase and sell the products in the cyber market place. To handle these problems, agent-based virtual market place system has been proposed where agents instead of individuals participate in trading of goods. Most of the proposed models have been in the two general categories. The first is the direct transaction among sellers and buyers, and the second is the agent-based transaction. However, the transaction is not fair and the best deal can't be guaranteed for both models. In this paper, we propose a new broker based synchronous transaction algorithm which is fair to both parties and guarantees the best deal. Our algorithm is implemented using Visual C++ and the experimental results show that our method is better than the two traditional transaction models in every performance metrics, Number of transactions are increased up to 21% and price adjustment is up to 280% better for some transactions.
Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.