• Title/Summary/Keyword: experimental greenhouse

Search Result 297, Processing Time 0.028 seconds

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.

Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture (0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증)

  • Park, Jong Min;Cho, Seong Pill;Lim, Ta Young;Lee, Young ill
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Development of Automated Model of Tree Extraction Using Aerial LIDAR Data (항공 라이다 자료를 이용한 수목추출의 자동화 모델 개발)

  • Lee, Su-Jee;Park, Jin-Yi;Kim, Eui-Myoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3213-3219
    • /
    • 2014
  • Currently, increase of greenhouse gas has had a signigicant impact on climate change in urbanization. As a result, the government has been looking for ways to take advantage of the trees that generate oxygen and reduce carbon dioxide for the prevention of climate change. It is essential to extract individual tree for calculating the amount of carbon dioxide reduction of trees. Aerial LIDAR data have three-dimensional information of building as well as trees as form of point clouds. In this study, automated model was developed to extract individual tree using aerial LIDAR data. For this purpose, we established a methodology for extracting trees and then proceeded the process of developing it as an automated model based on model builder of ArcGIS Software. In order to evaluate the applicability of the developed model, the model was compared with commercial software in study area located in Yongin City. Through the experimental result, the proposed model was extract trees 9.91% higher than commercial software. From this results, it was found that the model effectively extracted trees.

The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate

  • Dinh-Cong, Du;Keykhosravi, Mohammad. H.;Alyousef, Rayed;Salih, Musab N.A.;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • Construction development and greenhouse gas emissions have globally required a strategic management to take some steps to stain and maintain the environment. Nowadays, recycled aggregates, in particular ceramic waste, have been widely used in concrete structures due to the economic and environmentally friendly solution, requiring the knowledge of recycled concrete. Also, one of the materials used as a substitute for concrete cement is wollastonite mineral to decrease carbon dioxide (CO2) from the cement production process by reducing the concrete consumption in concrete. The purpose of this study is to investigate the effect of wollastonite on the mechanical properties and durability of conventional composite concrete, containing recycled aggregates such as compressive strength, tensile strength (Brazilian test), and durability to acidic environment. On the other hand, in order to determine the strength and durability of the concrete, 5 mixing designs including different wollastonite values and recovered aggregates including constant values have been compared to the water - cement ratio (w/c) constant in all designs. The experimental results have shown that design 5 (containing 40% wollastonite) shows only 6.1% decrease in compressive strength and 4.9% decrease in tensile strength compared to the control plane. Consequently, the use of wollastonite powder to the manufacturing of conventional structural concrete containing recycled ceramic aggregates, in addition to improving some of the properties of concrete are environmentally friendly solutions, providing natural recycling of materials.

Simulation-based Analysis of Electric Power Consumption Efficiency for Self-Driving Roller Conveyor Systems (시뮬레이션 기반 자체 구동 롤러 컨베이어 물류시스템의 전력 효율 분석)

  • Kim, Young J.;Park, Hee N.;HAM, Won K.;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.97-105
    • /
    • 2015
  • This paper is to analyze the efficiency of power consumption in logistic systems that are based on self-driving roller conveyors by the simulation technology. The improvement of the efficiency brings advantages for reducing greenhouse gas emission and logistics costs. A self-driving roller conveyor is operated only when products are loaded on itself. Thus, the self-driving roller conveyor systems consume less electric power than continuous-driving roller conveyor systems. In this paper, we design a DEVS (Discrete-Event based System) based simulation model and construct self-driving roller and continuous-driving roller conveyor models. For the verification and validation of the designed simulation system and conveyor models, we model a corresponding logistic model for the experimental environment and compare between the model and a real system. The main objective of this paper is to describe the power consumption advantage of self-driving roller conveyor based logistic systems using a simulation method.

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Chemical Properties and Carbon Pools

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Choi, Yong-Su
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.549-555
    • /
    • 2015
  • Objective of this study was to investigate the effect of carbonized biomass from crop residues on chemical properties of soil and soil carbon pools during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. A pot experiment with soybean in sandy loam soil was conducted for 133 days in a greenhouse, by a completely randomized design with three replications. The treatments consisted of four levels including the control without input and three levels of carbonized biomass inputs of $9.75Mg\;ha^{-1}$, C-1 ; $19.5Mg\;ha^{-1}$, C-2 ; $39Mg\;ha^{-1}$, C-3. Soil samples were collected and analyzed pH, EC, TC, TN, inorganic-N, available phosphorus and exchangeable cations of the soils. Soil pH, Total-N and available phosphorus contents correspondingly increased with increasing the carbonized material input. The contents of soil carbon pools were $19.04Mg\;C\;ha^{-1}$ for C-1, $26.19Mg\;C\;ha^{-1}$ for C-2, $33.62Mg\;C\;ha^{-1}$ for C-3 and $12.01Mg\;C\;ha^{-1}$ for the control at the end of experiment, respectively. Increased contents of soil carbon pools relative to the control were estimated at $7.03Mg\;C\;ha^{-1}$ for C-1, $14.18Mg\;C\;ha^{-1}$ for C-2 and $21.62Mg\;C\;ha^{-1}$ for C-3 at the end of experiment, respectively, indicating that the soil carbon pools were increased with increasing the input rate of the carbonized biomass. Consequently, it seems that the carbonized biomass derived from the agricultural byproducts such as crop residues could increase the soil carbon pools and that the experimental results will be applied to the future study of soil carbon sequestration.

The Research of Interworking System for Closed Plant Factories (식물공장을 위한 인터워킹 서비스 시스템에 대한 연구)

  • Lee, Myeongbae;Baek, Miran;Park, Jangwoo;Cho, Yongyun;Shin, Changsun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.91-97
    • /
    • 2018
  • The plant factory represents one of the future agricultural systems into which ubiquitous information technology (U-IT) is incorporated, including sensor networking, and helps minimize the influence of external experimental factors that constrain the use of existing greenhouse cultivation techniques. A plant factory's automated cultivation system does not merely provide convenience for crop cultivation, but also expandability as a platform that helps build a knowledge database based on its acquired information and develop education and other application services using the database. For the expansion of plant factory services, this study designed a plant factory interworking service (PFIS) which allows plant factories to share crop growth-related information efficiently among them and performed a test on the service and its implementation.

A Study on the Performance Variation of a Three-Dimensional Hydrofoil Using Jet Flow

  • Eom, Myeong-Jin;Paik, Kwang-Jun;Lee, Ju-Han;Kang, Shin-Min;Kim, Dong-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.24-37
    • /
    • 2021
  • As one of the development directions of high-performance ships to reduce greenhouse gas emissions, there is research on high-performance propellers. However, in the case of conventional screw propellers, as they have been studied for a long time, there is a limit to improving efficiency only by depending on the conventional design and analysis methods. In this study, we tried to solve the problems using the Coanda effect by spraying a jet on the surface of the hydrofoil. The Coanda hydrofoil consists of a tunnel and jet slit to make jet flow. The computation was performed for each tunnel and slit position, and the efficiency according to the geometry of the hydrofoil was analyzed. In addition, a study on the 3D geometry change was conducted to analyze the performance according to the span direction spraying range and hydrofoil shape. As the height of the slit and the diameter of the tip were lower, when the slit is located in the center of the hydrofoil, the lift force increased and the drag force decreased. The increase rate of lift-to-drag ratio was different according to the shape of the hydrofoil, and the efficiency of the spraying condition of 0.1S-0.5S, which had the least effect on the vortex at the tip of the blade, was high for all 3D hydrofoils. When the geometry of the slit was optimized, and also the shape and spray range of the hydrofoil in 3D was considered, the efficiency of the jet sprayed hydrofoil was increased.

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes (가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용)

  • Jeong, Seo Gyeong;Ha, Seongmin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.488-495
    • /
    • 2022
  • Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.