• 제목/요약/키워드: experimental dynamics

검색결과 1,820건 처리시간 0.035초

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

  • Hong, Sinpyo;Lee, Inwon;Park, Seong Hyeon;Lee, Cheolmin;Chun, Ho-Hwan;Lim, Hee Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.559-579
    • /
    • 2015
  • An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fairlead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

Numerical and Experimental Analyses Examining Ozone and Limonene Distributions in Test Chamber with Various Turbulent Flow Fields

  • ITO, Kazuhide
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권3호
    • /
    • pp.89-99
    • /
    • 2008
  • Indoor ozone has received attention because of its well-documented adverse effects on health. In addition to the inherently harmful effects of ozone, it can also initiate a series of reactions that generate potentially irritating oxidation products, including free radicals, aldehydes, organic acids and secondary organic aerosols (SOA). Especially, ozone reacts actively with terpene. The overarching goal of this work was to better understand ozone and terpene distributions within rooms. Towards this end, the paper has two parts. The first describes the development of a cylindrical test chamber that can be used to obtain the second order rate constant $(k_b)$ for the bi-molecular chemical reaction of ozone and terpene in the air phase. The second consists of model room experiments coupled with Computational Fluid Dynamics (CFD) analysis of the experimental scenarios to obtain ozone and terpene distributions in various turbulent flow fields. The results of CFD predictions were in reasonable agreement with the experimental measurements.

Temperature effects on brittle fracture in cracked asphalt concretes

  • Ayatollahi, Majid-Reza;Pirmohammad, Sadjad
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.19-32
    • /
    • 2013
  • Cracking at low temperatures is one of the frequently observed modes of failure in asphalt concretes. In this investigation, fracture tests were performed on cracked asphalt concrete subjected to pure mode I and pure mode II loading at different subzero temperatures. An improved semi-circular bend (SCB) specimen containing a vertical crack was used to conduct the experiments. The SCB specimens produced from the gyratory compacted cylindrical samples were compressively loaded, and critical stress intensity factors, $K_{If}$ and $K_{IIf}$, were then calculated using peak loads obtained from the tests. The experimental results showed that with decreasing the temperature, mode I and mode II critical stress intensity factors increased first but below a certain temperature they both decreased. It was also found that at a fixed temperature, the mode II fracture resistance of the asphalt concrete was higher than its mode I fracture resistance.

Design and the characteristic analysis of experimental system for automatic control education

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.350-350
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require a high rate heat efficiency and the efficiency of these systems is depended on the control methods. However, it is important f3r operator to understand control system of these systems. In order to properly apply control equipment to these process control systems, such as boiler, any other heat process, or process control system it is necessary to understand the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, PID controllers are used in these systems but it is difficult for engineer to understand the complex dynamics and the tuning method because of the coupling action and disturbance in the system loop. In this paper, we design an effective experimental system fur automatic control education and analyze its characteristics through experimental system and industrial plant control software to study how they can team automatic control system by experiments.

  • PDF

암석의 동역학적 특성 규명을 위한 실험기법의 분석 (Experimental Techniques for Dynamic Mechanical Characteristics of Rock Materials)

  • 오세욱;조상호
    • 화약ㆍ발파
    • /
    • 제38권3호
    • /
    • pp.30-43
    • /
    • 2020
  • 암석동역학은 동적하중조건하에서의 암반이나 암석의 역학적 거동에 대해 연구하는 학문으로, 자원개발이나 토목, 지진을 비롯한 재난재해, 국방과학 등 다양한 분야에 걸쳐 그 필요성이 증대되고 있다. 본 보고에서는 암석재료에 대한 동적 실험기법들과 동적 하중상태에서 암석이 보이는 역학적 거동 특성에 대한 최근의 연구결과들을 소개하고자 한다.

Experimental investigation of an active mass damper system with time delay control algorithm

  • Jang, Dong-Doo;Park, Jeongsu;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.863-879
    • /
    • 2015
  • This paper experimentally investigates the effectiveness and applicability of the time delay control (TDC) algorithm, which is simple and robust to unknown system dynamics and disturbance, for an active mass damper (AMD) system to mitigate the excessive vibration of a building structure. To this end, the theoretical background including the mathematical formulation of the control system is first described; and then, a thorough experimental study using a shaking table system with a small-scale three-story building structural model is conducted. In the experimental tests, the performance of the proposed control system is examined by comparing its structural responses with those of the uncontrolled system in the free vibration and forced vibration cases. It is clearly verified from the test results that the TDC algorithm embedded AMD system can effectively reduce the structural response of the building structure.

회전 유연 외팔보 진동 시뮬레이션 검증을 위한 테스트 베드 구축 (Developement of A Flexible Rotating Beam Test Bed for Experimental Varification)

  • 강연준;김성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.534-539
    • /
    • 2000
  • A flexible rotating beam test bed has been developed for experimental verification of flexible rotating beam dynamics and vibration. It consists of a flexible arm, harmonic driver reducer, ac servo motor and DSP board with PC. To capture the motion induced stiffening effects of the flexible rotating beam, substructuring model has been established in multibody dynamics simulation. Substructuring model provides better results comparing with experimental data.

  • PDF

구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가 (Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment)

  • 백빛나;오창보
    • 한국화재소방학회논문지
    • /
    • 제33권4호
    • /
    • pp.50-58
    • /
    • 2019
  • 구획실 내 가연물들의 화재거동에 대한 B-RISK의 예측성능을 Fire dynamics simulator (FDS)와 연계하여 검토하였다. 먼저 열발생률(Heat release rate, HRR)에 대한 B-RISK의 예측성능을 검토하기 위해 가연물 한 세트의 실험에서 측정된 HRR 값과 디자인 화재곡선을 B-RISK의 입력조건으로 사용하여 가연물 두 세트에 대한 HRR 곡선을 계산하고 실험에서 측정된 가연물 두 세트의 HRR 값과 비교하였다. B-RISK 결과와 실험결과를 비교하여 B-RISK가 화재성장률에 대한 예측은 어렵지만 최대 HRR 값과 총 열발생량에 대해서는 충분히 예측할 수 있음을 확인하였다. 그리고 B-RISK 계산을 통해 예측된 HRR 값을 FDS의 입력조건으로 사용하여 계산된 결과와 실험결과를 비교하여 B-RISK 계산을 통해 예측된 HRR 값의 화재거동에 대해 검토하였다. 실험에서 측정된 온도 및 화학종 농도 결과와 비교하여 화재성장구간에 대해 차이가 있는 것을 확인하였지만 예측된 HRR 값에서 Percentile이 약 70%인 HRR 값을 사용하더라도 충분히 전체적인 화재거동을 예측할 수 있음을 확인하였다.

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.