• Title/Summary/Keyword: experimental approach

Search Result 5,281, Processing Time 0.037 seconds

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.

The Effects of Problem Posing Program through Structure-Centered Cooperative Learning on Mathematics Learning Achievements and Mathematical Disposition (구조중심 협동학습을 통한 문제 만들기 학습이 수학학업성취도 및 수학적 성향에 미치는 효과)

  • Yun, Mi-Ran;Park, Jong-Seo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.12 no.2
    • /
    • pp.101-124
    • /
    • 2008
  • The purpose of this study is to test if problem posing based on structural approach cooperative learning has a positive effect on mathematical achievement and mathematical disposition. For this purpose, this study carried out tasks as follows: First, we design a problem posing teaching learning program based on structural approach cooperative learning. Second, we analyze how problem posing based on structural approach cooperative learning affects students' mathematical achievement. Third, we analyze how problem posing based on structural approach cooperative learning affects students' mathematical disposition. The results of this study are as follows: First, in the aspect of mathematical achievement, the experimental group who participated in the problem posing program based on structural approach cooperative teaming showed significantly higher improvement in mathematical achievement than the control group. Second, in the aspect of mathematical disposition, the experimental group who participated in the problem posing program based on structural approach cooperative teaming showed positive changes in their mathematical disposition. Summing up the results, through problem posing based on structural approach cooperative learning, students made active efforts to solve problems rather than fearing mathematics and, as a result, their mathematical achievement was improved. Furthermore, through mathematics classes enjoyable with classmates, their mathematical disposition was also changed in a positive way.

  • PDF

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Evolutionary Approach for Traveling Salesperson Problem with Precedence Constraints

  • Moon, Chi-Ung;Yun, Young-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.305-308
    • /
    • 2007
  • In this paper we suggest an efficient evolutionary approach based on topological sort techniques for precedence constrained TSPs. The determination of optimal sequence has much to offer to downstream project management and opens up new opportunities for supply chains and logistics. Experimental results show that the suggested approach is a good alternative to locate optimal solution for complicated precedence constrained sequencing as in optimization method for instance.

  • PDF

An Improved Method of Method of Fuzzy Approximate Reasoning by Combining Self-Organizing Feature Map and Fuzzy Logic (자기조직화 특성지도와 퍼지로직을 결합한 개선된 형태의 퍼지근사추론에 관한 연구)

  • 이건창;조형래
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 1998
  • This paper proposes a new type of fuzzy approximate reasoning method that combines a self organizing feature map and a fuzzy logic. Previous methods considered only input part to determine the number of fuzzy rules, while this paper considers both input and output parts simultaneously. Our approach proved to improve the inference performance. We also developed a new index for avoiding overlearning which guarantees more accurate results. Experimental results showed that our approach surpasses the performance of Takagi & Hayashi (1991) approach.

  • PDF

Evaluation of Dapped Beam Design Methods using Strut-Tie Models (스트럿-타이 모델에 의한 턱이진 보 설계방법의 평가)

  • 윤영묵;최명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.235-240
    • /
    • 2000
  • Although dapped-end beams are widely used in bridge and building structures, there are not any specific and reasonable design regulations on dapped-end beams. In this study, the validity of the suggested experimental and empirical design methods, conventional strut-tie model approach, and nonlinear strut-tie model approach is evaluated through the analysis of dapped-end beams tested to failure. The nonlinear strut-tie model approach proved to be the most suitable method for dapper-end beam design.

  • PDF

Hybrid control of rotary type inverted pendulum by using one-chip microcomputer (One-chip 마이크로 컴퓨터에 의한 회전형 도립 진자의 hybrid 제어)

  • 김환성;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.999-1003
    • /
    • 1992
  • In the paper, a hybrid control approach for the swing-up control of a rotary type inverted pendulum is treated using one-chip microcomputer. The control approach is composed by a scheduling logic control for swing up control and the linear state feedback control to achieve the disired inverted-state of the pendulum. The experimental cystem has been implemented by a 16-bit one-chip microcomputer with 3096 opu as the digital controller incorporating the above mentioned control approach.

  • PDF