• Title/Summary/Keyword: experimental analysis

Search Result 23,584, Processing Time 0.05 seconds

Characteristic Analysis of Spiral-Grooved Pump Seal (나선 홈 펌프 시일의 특성 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.799-804
    • /
    • 2002
  • In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator are performed. For developing a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressure flow through the spiral groove. Results by the present analysis are compared with available experimental data. For leakage the analysis results generally show a reasonable agreement to the experimental results. For rotordynamic coefficients the analysis results show the same trend as the experimental results for rotor speed with spiral angles, but their magnitudes show somewhat large deviations.

  • PDF

Improvement of Steering-Wheel Idle Vibration in a Passenger Car using Design Sensitivity Analysis (설계민감도 해석을 이용한 승용차의 스티어링 휠 아이들 진동 개선)

  • 이두호;김명업
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • In the prototype stage of a car developing program, the efficiency of trouble shooting is an important factor to be considered. Structural modifications by the design sensitivity analysis are applied to a steering wheel system for improving the idle vibration of the prototype passenger car. For the design sensitivity analysis, the experimental modal analysis for the steering system attached to a body-in-white is fulfilled and the modal parameters extracted from the experimental data are used to predict the effect of structural modification, The design sensitivity results rank the locations to be reinforced in terms of frequency variation. The modification of steering system according to the sensitivity analysis results shifted the resonant frequency of the system effectively. In addition, the idle test of the car after the structural modifications f steering system shows that the proposed method can reduce vibration of the steering wheel efficiently.

  • PDF

Experimental Vibration Analysis of a Super-Structure Model Using Curve Fitting Method (곡선맞춤법을 이용한 선체상부구조 모델의 진동해석)

  • Oh, Chang-Geun;Je, Hae-Kwang;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • It might be true that both experimental and analytic techniques have been developed in the vibration analysis end engineering. It could not be said, however, that the experimental method has been also developed as much as analytic method, such as Finite Element Method One of the reason is that computation time becomes longer and that the solution often diverges depending on the choice of initial value in solving nonlinear equation. The equation in experimental modal analysis is usually composed of the nonlinear term of natural frequency and modal damping ratio, and the linear one of equivalent stiffness. In this study, the nonlinear terms were solved first, and then the linear term was obtained. The experimental modal parameters were estimated, applying the developed experimental modal analysis curve-fitting method to the super-structure model. In addition, the number of modes and modal damping ratio could be easily determined by the developed program with the application of graphical techniques and with easy handling button.

Analysis the 10kW-grade Rotor Blade with Fiber Reinforced Plastics (F.R.P로 제작된 10kW급 소형 Rotor Blade의 특성 분석)

  • Son Choong-Yul;Kim Keon-Hoon;Shin Jong-Yeon;Lee Jung-Tak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.575-582
    • /
    • 2005
  • Wind Turbines of big scale of modem stage are made of a part glass F.R.P. Carbon Reinforced Plastic and Kevlar can be used 0 reinforcement but those are not economical in big scale of Wind Turbines. In this study life sized 10kW-class Rotor Blade is made of F.R.P. which is high stiffness and good dynamic behavior characteristic for light weight. It is accomplished an experimental research of Bending analysis blade. Bending analysis blade are calculated with F.E. Analysis performed with commercial F.E.M program ANSYS. Finally, experimental research is compared with F.E. Analysis. The results indicate that experimental values have good agreements with the F.E. Analysis.

  • PDF

Damage detection in stiffened plates by wavelet transform

  • Yang, Joe-Ming;Yang, Zen-Wei;Tseng, Chien-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.126-135
    • /
    • 2011
  • In this study, numerical analysis was carried out by using the finite element method to construct the first mode shape of damaged stiffened plates, and the damage locations were detected with two-dimensional discrete wavelet analysis. In the experimental analysis, four different damaged stiffened structures were observed. Firstly, each damaged structure was hit with a shaker, and then accelerometers were used to measure the vibration responses. Secondly, the first mode shape of each structure was obtained by using the wavelet packet, and the location of cracks were also determined by two-dimensional discrete wavelet analysis. The results of the numerical analysis and experimental investigation reveal that the proposed method is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer measurement points are required with the proposed technique in comparison to those presented in previous studies.

Free Vibration Analysis of a Core Support Barrel by Experimental and Analysis Methods (실험 및 해석을 통한 노심지지 원통쉘의 자유진동해석)

  • 김월태;정명조;송선호;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.217-222
    • /
    • 1997
  • Free vibration analysis of a Core Support Barrel shell structure is studied through experimental and finite element analysis methods. The structure is considered to be a thick shell with the ratio of thickness to radius 3/10. Finite element model is established by solid model with brick elements. Modal analyses are performed with respect to the various ratios of thickness to radius with clamped-free and free-free boundary conditions. Experimental test is done to find out how well the results are agreed with those of analysis. The comparison of the results from experiment and analysis shows a good agreement between them in general.

  • PDF

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

Resonant vibration of piezoceramic plates in fluid

  • Lin, Yu-Chih;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.177-190
    • /
    • 2008
  • In this paper, both experimental measurement and theoretical analysis are used to investigate the out-of-plane resonant characteristics of a cantilevered piezoceramic plate in air and three different kinds of fluid. The experimental method, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), is the major technique used in this study to measure the resonant characteristics of the cantilivered piezoceramic plate. Both resonant frequencies and full-field mode shapes are obtained from this experimental technique. Numerical computations based on the finite element analysis are presented for comparison with the experimental results. Good quality of mode shapes for the cantilevered piezoceramic plate in air is obtained from the AF-ESPI technique. However, the quality decreases as the viscosity of fluids increases. From the results provided from experimental measurements and numerical computations, it is indicated that the resonant frequencies of the cantilevered piezoceramic plate in fluid decrease with the increase of the viscosity of fluids. Good agreements between the experimental measured data and the numerical calculated results are found for both resonant frequencies and mode shapes of the cantilevered piezoceramic plate in fluid.