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ABSTRACT: In this study, numerical analysis was carried out by using the finite element method to construct the first mode 
shape of damaged stiffened plates, and the damage locations were detected with two-dimensional discrete wavelet analysis. In 
the experimental analysis, four different damaged stiffened structures were observed. Firstly, each damaged structure was hit 
with a shaker, and then accelerometers were used to measure the vibration responses. Secondly, the first mode shape of each 
structure was obtained by using the wavelet packet, and the location of cracks were also determined by two-dimensional 
discrete wavelet analysis. The results of the numerical analysis and experimental investigation reveal that the proposed method 
is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer 
measurement points are required with the proposed technique in comparison to those presented in previous studies. 
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INTRODUCTION 

 
During recent decades, wavelet analysis has been an 

useful tool in detecting damage in structures. However, most 
researches have focused on the damage identification in basic 
structures such as beams, plates and bearings. In practical 
application, the basic structures do not exist alone. Instead, 
they are usually accompanied with one another, and these 
composite structures are commonly used in ships. Wavelet 
transform can resolve time domain-frequency domain 
problems more effectively and has a great capability in 
reconstructing the decomposed signal. In this study, a method 
for crack identification in stiffened plates based on two-
dimensional wavelet analysis was investigated.  

French physicist Morlet (1982, 1983) determined that the 
Fourier transform was unable to analyze seismic waves 
during short time periods, so Goupillaud, Grossmann and 
Morlet (1984) later applied the wavelet concept on this signal 
analysis technique. Afterwards, Meyer (1986) and Mallat 
(1988) introduced the multi-resolution concept into wavelet 
analysis to form discrete wavelet transform. 

Cawley and Adams (1979) combined measurements of 
natural frequencies from the experimental results and the 
finite element analysis to detect damage locations in 
structures. Daubechies (1992) constructed the orthogonal and 
compact support wavelet, which had local resolution in both 
time and frequency domains. Surace and Ruotolo (1994) 

simulated the vibration signal of a cracked beam by wavelet 
transform. Furthermore, Wang and Mcfadden (1996) handled 
the vibration signal of a gear box with wavelet transform. 
Rucka and Wilde (2006) analyzed the modal shape of a 
cracked cantilever beam and plate by utilizing continuous 
wavelet transform to identify the damaged area. Yang and 
Hwang (2008) carried out a method involving both wavelet 
packet node norm and two-dimensional discrete wavelet 
transform (DWT2) which, in return, measured the first mode 
shape of aluminum alloy plates and found the location of 
cracks. In this paper, the first modal shape for an aluminum 
rectangular plate with stiffeners was obtained by using 
wavelet packet node norm initially, and then the damage 
locations were detected by two-dimensional discrete wavelet 
transform. 

 
 
 

WAVELET TRANSFORM 
 
Wavelet transform is widely used to resolve time domain-

frequency domain problems. The basis of a wavelet 
transform is composed of translation and dilation functions. 
These functions are orthogonal functions and are formulated 
by shifting and expanding a basic wavelet function according 
to high or low frequency signals, which are to be analyzed. 
With the above features, the wavelet transform has great 
capability to display high time domain resolution at high 
frequencies and high frequency domain resolution at low 
frequencies.  

 
 

Corresponding author: Joe Ming Yang 
e-mail: z7908036@email.ncku.edu.tw  



Inter J Nav Archit Oc Engng (2011) 3:126~135 127
 
 

 

Continuous wavelet transform 
 

In one-dimensional space, for a signal 2( ) ( ) f t L R∈  
with t−∞ ≤ ≤ ∞ continuous wavelet transform (CWT) is the 
convolution of the signal function with the wavelet function 

(mother wavelet) 2( ) ( )t L Rψ ∈ , and can be expressed as: 
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Where ( )tψ  is the complex conjugate of ( )tψ , and the 

variables s and u represent the scale and translation 
parameters, respectively. As the variable s is increased, the 
period of the wavelet is also increased and vice versa. 
Therefore, the variable s is considered as a trade-off variable 
between the time domain resolution and the frequency 

domain resolution. The term 
1 t u
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 is the wavelet basic 

function (baby wavelet), and 1 / s  is a factor which allows 
the energy to remain the same before and after the 
transformation. 

 
 

Discrete wavelet transform 
 
The CWT method transforms a one-dimensional single 

variable function into a two-dimensional double variable 
function as described in the section above. In this 
transformation, a lot of redundancy and computational 
complexities are produced. To reduce the computing time 
and to save the memory space, scientists developed the 
discrete wavelet transform (DWT) based on the discrete 
scale parameter s and the translation parameter u. The 
decomposition and reconstruction of DWT adopt the Mallat 
algorithm.   

The scaling function ϕ associates with one-dimensional 
multi-resolution approximation { }j j ZV ∈  where j corresponds 

to the scale level as a scaling function. In two-dimensional 

discrete wavelet analysis, the approximation space 2
{ }j j ZV ∈ is 

the separable two-dimensional multi-resolution and is defined 
as Vj

2 = Vj ⊗ Vj where ⊗  denotes the tensor product, and Vj  
represents the one-dimensional space. Considering Wj

2 as the 
detail space, which is the orthogonal complement of the 
lower resolution approximation space Vj

2 in V2
j-1, V

2
j-1 can be 

expressed as  
 

2 2 2
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Where ⊕  denotes the direct sum of two orthogonal 

vector spaces. Based on Equation (2), a wavelet orthogonal 
basis on L2(R2) can be constructed by using the scaling 
function φ(x) and the corresponding wavelet ψ(x). The 
wavelet ψ(x) is the one-dimensional wavelet associated with 

the scaling function φ(x). Details of the derived two-
dimensional discrete wavelet transform can be found in 
Mallat et al. (1988). In particular, the jointed scaling function 
and three wavelets are defined as follows: 

 
( , ) ( ) ( )x y x yφ φ φ=                                (3) 

 
1 ( , ) ( ) ( )x y x yφΨ = Ψ                              (4) 

 
2 ( , ) ( ) ( )x y x yφΨ = Ψ                              (5) 

 
3 ( , ) ( ) ( )x y x yΨ = Ψ Ψ                             (6) 

 
The approximation signal is defined as ϕ(x,y) and ψ1(x,y), 

ψ2(x,y) and ψ3(x,y) denote the signals in the horizontal, 
vertical and diagonal directions, respectively. One easier 
method in proceeding with DWT2 is to employ either a 
certain wavelet or particular wavelet decomposition filters 
(Lo_D and Hi_D). Fig. 1 shows the basic decomposition 
steps for DWT2 where CAj+1 is the approximate signal, and 
the notations CDh

j+1, CDV
j+1 and CDd

j+1 are the detail signals 
in the horizontal, vertical, and diagonal orientations, 
respectively. 

In previous studies (Yang, 2008), it was established that 
the 2-D DWT method could detect small disturbances in the 
plate, and the diagonal detailed signal could pinpoint the 
locations of cracks in an alloyed plate. Hence, 2-D DWT 
was carried out in this study to locate cracks or damaged 
areas. 

 

 
 

Fig. 1 Decomposition steps for DWT2. 
 
 
Wavelet packet decomposition 

 
The wavelet packet method is a generalization of wavelet 

decomposition that offers a richer signal analysis. The wavelet 
packet is waveforms indexed by three naturally interpretable 
parameters: position, scale (as in wavelet decomposition) and 
frequency. For a given orthogonal wavelet function, a library 
known as the wavelet packet base has the exact features. Each 
of these bases provides a particular way of coding signals to 
preserve global energy and to reconstruct the same features.  
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The wavelet packets can be applied to numerous expansions 
of a given signal. The most suitable decomposition of a set 
signal with respect to an entropy-based criterion is selected. 
There exist simple and efficient algorithms for both wavelet 
packet decomposition and optimal decomposition. The 
adaptive filtering algorithm with direct application in optimal 
signal coding and data compression is then produced. As 
shown in Fig. 2, the wavelet packet transform can be viewed 
as a tree diagram. The root of the tree is the original data set. 
After the first transform step, the low pass result is located on 
the left branch of the tree diagram, and the high pass result is 
positioned on the right branch. The second level of the tree 
diagram consists of results from the next step of the wavelet 
transform. Subsequent levels in the tree are created by 
recursively applying the wavelet transform step to the 
previous low and high pass filter results. 

 

 
 

Fig. 2 Wavelet packet tree. 
 

Wavelet packet node norm 
 
Wavelet packet coefficient is the inner product of the 

signal function f(t) and the wavelet packet function Wj,n,k(t): 
 

, , , , , ,
, ( ) ( )

j n k j n k j n k
w f W f t W t dt= =                        (7) 

 
The wavelet packet node energy, which has its own 

special physical characteristics, presents a more powerful 
identification ability than the wavelet packet coefficients.  

 
2
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Let Cj,n denotes the energy in the frequency band at the 

same wavelet packet node (j, n), and then the wavelet packet 
node norm can be expressed as the square root of the wavelet 
packet node energy: 
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In the experiment analysis, the wavelet packet node norm 

was calculated for each measured point. 
 
 
NUMERICAL SIMULATION BY ANSYS 

 
Before applying the wavelet transform to experimental 

analysis, the numerical simulations were performed at first. A 

plate of dimensions 54cm × 30cm × 0.3cm and four stiffeners 
of dimensions 54cm × 3cm × 0.3cm and 30cm × 3cm ×0.3cm 
were utilized to form the 3-D finite model shown in Fig. 3. 
The distance between the stiffeners and the edge of the plate 
was 3cm. Each mesh, which was in the plate, was of 1cm × 
1cm, where plate was divided into 1620 meshes. The 
damaged area had dimensions of 3cm × 3cm × 0.1cm is 
shown in Fig. 3. The first mode shape of the plate is shown in 
Fig. 4. 

 

 
 

Fig. 3 Schematic diagram of the stiffened plate. 
 

 
 

Fig. 4 First mode shape of the stiffened plate. 

 
In the case of two-dimensional signals, the space-scale 

representation of a signal is a three-dimensional problem. 
The result of the two-dimensional wavelet transform of the 
plate mode shape has four wavelet coefficients as shown in    
Fig. 1 : The first one is the approximate signal CA1, the 
others are three detailed signals, including the horizontal 
detailed signal CD1

1, the vertical detailed signal CD1
2 and the 

diagonal detailed signal CD1
3. In this investigation, we chose 

Symlets 4 wavelet to operate two-dimensional discrete 
wavelet analysis. Furthermore the effects of other types of 
wavelet are also discussed in the following section. The 
approximate signal CA1 in Fig. 5(a) indicates the smoothed 
version of the mode of vibration for the damaged plate. Fig. 
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5(b) displays the horizontal detailed signal CD1
1. The vertical 

detailed signal CD1
2 and the diagonal detailed signal CD1

3 are 
shown in Fig. 5(c) and Fig. 5(d), respectively. Only the 
vertical detailed signal CD1

2 and the diagonal detailed signal 
CD1

3 can identify the approximate location of the damage. It 
is found that the horizontal detailed signal CD1

1 is sensitive 
to the defects parallel to the x axis and the vertical detailed 

signal CD1
2 is sensitive to the defects parallel to the y axis. 

The diagonal detailed signal CD1
3 is sensitive to the defects 

parallel to either the x or y orientation. The above results 
suggest that the diagonal detailed signal CD1

3 should be 
considered in the present case. In the subsequent analysis, the  
diagonal detailed signal CD1

3 is more suitable to be used for 
finding cracks of the stiffened plate.   

 

  
 

(a) Approximate signal.                                (b) Horizontal detailed signal. 
 

 
(c) Vertical detailed signal.                               (d) Diagonal detailed signal. 
 

Fig. 5 The signals after applying 2-D discrete wavelet transform on damaged plate of first modal shape. 
 
 

Based on the discussion above, the damaged location 
or the crack location on a stiffened plate can be found by 
the two-dimensional discrete wavelet transform method. 
For the following scenario, the damaged area was 
simulated on the reverse side of the plate, and therefore, 
the location of the damage could not be seen directly on 
the main face of the plate. Nevertheless, the damaged area 
could be identified using 2-D discrete wavelet transform 
analysis. However, a problem arose as the peak signals  
caused by the damaged area was not distinct enough in Fig. 

5(d) due to the interference of the stiffeners. This 
interference raised the amplitude of these signals 
compared to the signals produced just by the damaged area 
alone. Consequently, the analyzed area must be minimized 
in order to eliminate the effects caused by the stiffeners, 
and the measurement area was thus reduced to the shaded 
area shown in Fig. 6. The diagonal detailed signal of the 
shaded area is presented in Fig. 7. After we minimized the 
analyzed area, the location of the damaged area can be 
determined easily. 
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In order to make comparisons with the experimental 
modal analysis, we simulated four different damaged 
stiffened plates by using ANSYS. The dimensions 4cm 
×1cm × 0.03cm of the damaged area were selected. Case 1,  

which has two measurement areas, is shown in Fig. 8(a) and 
Fig. 9(a), respectively. The diagonal detailed signals for 
measurement areas 1 and 2 are displayed in Fig. 8(b) and 
Fig. 9(b). 

 

 

  
 

Fig. 6 Diminishing the analyzed area (shadow area).          Fig. 7 Diagonal detailed signal of the shadowed area. 

 

  
 
Fig. 8(a) Case1 (measurement area 1).                    Fig. 8 (b) Diagonal detailed signal of measurement area1. 

 

  
 
Fig. 9 (a) Case 1 (measurement area 2).                     Fig. 9 (b) Diagonal detailed signal of measurement area2. 
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Comparisons of analysis using different types of wavelet 
 
It is important to choose the proper wavelet in order to 

operate wavelet transform. Fig. 8(b) shows the diagonal 
detailed signal based on Symlet 4 wavelet, and the crack can 
be identified in case 1 (measurement area 1). Moreover, four  

wavelet transform analysis depending on the different 
wavelet used are also discussed. Fig. 10 shows diagonal 
detailed signals based on Symlet 2, Symlet 5, Daubechy 5 
and Coiflet 3. Ultimately, Symlet 4 is determined to be the 
best wavelet for detecting cracks on stiffened plates and is 
used in the following sections. 

 
 

  
(a) Diagonal signal based on Symlet 2 wavelet.           (b) Diagonal signal based on Symlet 5 wavelet. 

 
 

  
(c) Diagonal signal based on Daubechy 5 wavelet.           (d) Diagonal signal based on Coiflet 3 wavelet. 

 
Fig. 10 Two-dimensional discrete wavelet transform based on four different wavelets. 

 
 
Identification of crack using Symlet 4 wavelet for 
stiffened plate 

 
The crack locations were chosen based on the amplitudes 

of the diagonal detailed signals. The amplitudes were 
affected by boundary conditions or the use of welding 
methods, and as a result, the relative peaks may be treated as 

possible crack locations. It is easy to identify the location of 
the damaged area shown in Fig. 8(b); however, it is not 
applicable to the case displayed in Fig. 9(b) due to the 
numerous noise signals found near the edges of the plate. 
These noises affect the determination of the damaged area 
and may be formed from the fixed end. Similar phenomena 
can be found in our experimental results.  
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(a) Measurement area of case 2.                   (b) Diagonal detailed signal of measurement area. 
 

Fig. 11. (a) The measurement area of case 2 and (b) Diagonal detailed signal after 2-D DWT. 
 
 

  
(a) Measurement area of case 3.                       (b) Diagonal detailed signal of measurement area. 
 

Fig. 12. (a) The measurement area of case 3 and (b) Diagonal detailed signal after 2-D DWT. 
 
 

   
(a) Measurement area of case 4.                       (b) Diagonal detailed signal of measurement area. 

 
Fig. 13 (a) The measurement area of case 4 and (b) Diagonal detailed signal after 2-D DWT. 
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Fig. 11(a) to 13(a) present three different measurement 
areas for various crack locations. The diagonal detailed 
signals which are obtained from the shaded area are 
presented in Fig. 11(b)-13(b), respectively. By comparing 
cases 1 and 3, we conclude that the simulation results are not 
affected by the free end. By distinguishing between case 1 
and case 4, the results reveal that the fixed end will produce a 
great amount of noise signals near the edges of the diagonal 
signal diagram, and these noise signals will affect the 
precision of determining the crack locations. 
 
 
 
EXPERIMENTAL MODAL ANALYSIS  
 
Experimental procedure 

 
Firstly, a pulse signal generated by the program Labview 

was amplified and was then sent to the shaker to excite the 
stiffened plates. Afterwards, the responses of the stiffened 
plates were measured by accelerometers that were pasted onto 
the stiffened plates by using beeswax. Next, the measured 
waveforms were converted into digital values that could be 
recorded by computer. Fig. 14 portrays the above experimental 
procedure of signal analysis for the stiffened plates. 
 Each stiffened plate was composed of 6061T6 aluminum 
alloy. The length, width and thickness of the stiffeners and 
the plate were the same as the simulated ones. Young’s 
modulus (E) and Poisson’s ratio (ν ) of the aluminum alloy 
material were 70000 Mpa and 0.33, respectively, and the 
density ( ρ ) was 2700Kg/m3. The crack’s length was of 

45mm, and the width of the crack was 1mm. 
 

 
 

Fig. 14 Test facility flow chart. 
 
Fig. 15 gives the top view of the test facilities and the 

boundary conditions of the stiffened plate. Case 1 has two 
measurements, as shown in Fig. 15 and Fig. 16. Fig. 15 to Fig. 
19 display the arrangement of boundary conditions of the 
stiffened plates and the locations of the cracks for case 1 to 
case 4, respectively. In the experiments, one accelerometer 
was used as the reference input whereas the second 
accelerometer was moved along the serial numbers located in 
the shaded area. The distance between one measured point to 
another was 2cm. In order to smoothen the transition from 
one point to another, an interpolation procedure was applied.  

 
 

Fig. 15 Top view of case1(measurement area1). 
 

 
 

Fig. 16 Top view of Case1(measurement area 2). 
 

 
 

Fig. 17 Case 2. 
 

 
 

Fig. 18 Case3.  
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Fig. 19 Case4. 

 
For this purpose, a cubic interpolation was used, and the 
mode shape of the plate was interpolated to decrease the 

sampling distance from 20mm to 6.6mm. Furthermore, each 
mode shape was normalized. 
 
 
Analysis of measured signals 

 
The first mode shape of the stiffened plates was 

constructed by using the wavelet packet node norm. Fig. 
20 displays the first mode shapes of experimental case one 
and simulated case one. Afterwards, 2-D DWT is used to 
analyze the first mode shape of the damaged plates. The 
results of case 1 (measurement area 1 and measurement 
area 2), case 2, case 3 and case 4 are shown in Fig. 21 to 
Fig. 25, respectively. By excluding the boundary 
condition’s noising effect that occurred in case 1 
(measurement area 2), the precision of locating the crack 
will not be affected in the other cases below. Nonetheless, 
there are still some noise signals in the experimental 
results. 

 

 
 
(a) expremental first mode shape.                       (b)simulated first mode shape. 

 

Fig. 20 (a) The first mode shape of case1 obtained by using wavelet packet node norm and (b) First mode shape of case1 
obtained by ANSYS(The scale in figure is 1:3cm). 
 

 
 
Fig. 21 Diagonal detailed signal of case1 (measurement area 1).   Fig. 22 Diagonal detailed signal of case1 (measurement area 2). 
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Fig. 23 Diagonal detailed signal of case 2.  
 

 
Fig. 24 Diagonal detailed signal of case 3 
 

 
Fig. 25 Diagonal detailed signal of case 4. 
 
 
 
CONCLUSIONS 

  
The present investigation is primarily based on the 

numerical simulation and the experimental study to explore 
the active non-destructive damage detection method for 
stiffened plates by wavelet transform. Symlets 4 wavelet is 
appropriate for detecting the location of cracks in single and 
double-cracked stiffened plates. We can then determine the 
location of cracks through diagonal detailed signal. The 
advantage of the proposed technique is that the less 

expensive equipments are used to identify cracks or flaws in 
a stiffened plate. In addition, fewer measurement points are 
required by utilizing the proposed method in comparison to 
those presented in previous studies. Thus, the method may 
become a feasible non-destructive inspection practice for 
identification of small cracks of structural members as it also 
requires a shorter operation time compared to previous 
methods.  
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