• Title/Summary/Keyword: experiment sensor

Search Result 1,735, Processing Time 0.037 seconds

Operating Characteristic Analysis of Optic Temperature Sensor for Overheat Detection in Panel Board (분전함에서 이상발열 감지를 위한 광온도센서의 동작특성 분석)

  • Moon, Hyun-Wook;Kim, Dong-Woo;Gil, Hyung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.100-106
    • /
    • 2009
  • In this study, methods of overheat detection at the coupling or wire in electrical facility are investigated, operating characteristic about the optic temperature sensor for continuous on-line temperature monitoring in diagnostics system of electrical facility is analyzed. Heating sources in the experiment for operating characteristics of optic temperature sensor use black body and hot plate, output voltage of optic temperature sensor in accordance with temperature variation is analyzed. Overheat generation due to poor contact at the circuit breaker in panel board detects using a thermocouple, infrared thermal camera and optic temperature sensor, and experiment results are analyzed. The effect of optic temperature sensor is the same that of other methods. These results expect to use basic research material for adjusting field of electrical diagnostics system using RFID type optic temperature sensor in the near future.

An experimental analysis of vibration-induced noise isolation characteristics of a sonar acoustic sensor (소나 음향센서의 진동유기 소음 차단 특성에 대한 실험적 연구)

  • Kim, Kyungseop;Je, Yub;Kim, Ho-Jun;Cho, Yo-Han;Lee, Jeong-Min;Kim, Donghyeon;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.193-199
    • /
    • 2019
  • In this paper, the results of underwater vibration experiment are analyzed to verify platform vibration-induced noise isolation characteristics of a hull-mounted acoustic sensor. The experimental condition causing platform vibration-induced noise is generated using the mock-up hull, where the acoustic sensor is installed, with shaker in an acoustic water tank. The performance indices of ATF (Acceleration Transfer Function), AVS (Acceleration Voltage Sensitivity), and IL (Insertion Loss) for the acoustic sensor are calculated from the output of the standard accelerometers, which are installed on the mock-up hull and the acoustic sensor, and the output signal of the acoustic sensor. The frequency-dependent noise isolation characteristics of the acoustic sensor are analyzed based on the calculated performance indices and an effectiveness of the experiment is examined.

Design of Remote Management System for Smart Factory

  • Hwang, Heejoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2020
  • As a decrease in labor became a serious issue in the manufacturing industry, smart factory technology, which combines IT and the manufacturing business, began to attract attention as a solution. In this study, we have designed and implemented a real-time remote management system for smart factories, which is connected to an IoT sensor and gateway, for plastic manufacturing plants. By implementing the REST API in which an IoT sensor and smart gateway can communicate, the system enabled the data measured from the IoT sensor and equipment status data to the real-time monitoring system through the gateway. Also, a web-based management dashboard enabled remote monitoring and control of the equipment and raw material processing status. A comparative analysis experiment was conducted on the suggested system for the difference in processing speed based on equipment and measurement data number change. The experiment confirmed that saving equipment measurement data using cache mechanisim offered faster processing speed. Through the result our works can provide the basic framework to factory which need implement remote management system.

Wall and Corner Recognition Method for Indoor Autonomous Mobile Robot (실내 자율주행 로봇을 위한 벽과 모퉁이 인식방법)

  • Lee, Man-Hee;Cho, Whang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.529-531
    • /
    • 2004
  • For localization, it is very important for an autonomous mobile robot to be able to recognize indoor environment and match an object it detect to an object within a map developed either online or offline. Given the map defining the locations of geometric beacons like wall and comer existing in the robot operation environment, this paper presents a stereo ultrasonic sensor based method that can be conveniently used in recognizing the geometric beacons. The stereo ultrasonic sensor used in the experiment consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter. Experiment shows that the proposed method is more efficient in recognizing wall and coner than the conventional method of using multiple number of transmitter-receiver pairs.

  • PDF

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF

Embodiment of Firewall Block for Safety in the Cave (동굴 공간의 안전과 방재차단벽)

  • Kim, Bo-Su;Kim, Kang-Won;Kim, Tae-Hwan;Park, Jung-Ho;Lee, Yung-Jae;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.87
    • /
    • pp.8-13
    • /
    • 2008
  • The automatic firewall block and fire alarm system was embodied by using gas circuit and wireless communication equipment, using a smoke sensor (ST-QA1A) and RF Module. OR-CAD was also used for testing circuit system and experiment circuit after assembling circuit. As a result in experiment, the gas sensor detected well an imaginary smoke and worked reliably for driving action of firewall block motor and wireless warning alarm. Through the smoke sensitive perception from the fire, the warning alarm and the preventing fire propagation from the specific closed region were verified reliably. The gas sensor and RF module for firewall and fire alarm system were actually available.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

A Long-term Monitoring Demonstration of Smart Home System for the Elderly (노인을 위한 스마트 홈 시스템 장기 모니터링 실증 연구)

  • Rhee, Jee Heon;Cha, Seung Hyun
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.75-90
    • /
    • 2021
  • A smart home system improves the elderly's quality of life by monitoring and analyzing their movements and health conditions with better health-care and social support services. Therefore, there has been an effort to adopt a smart home system for the independently living elderly. However, to the best of our knowledge, no study has investigated the usability of a smart home system on actual independently living elderly housing in long-term settings. Thus, this study aims to demonstrate the usability of a smart home system on independently living elders in living lab conditions. The BLE smart band and the BLE receiver were chosen for the smart home system to monitor the movement of the participants in their homes as well as to monitor the heart rates, step counts, sleep index. Nine independent living elderly from the senior welfare center in Kimjae participated in this living lab demonstration experiment for ten months. This demonstration experiment confirmed the effectiveness of low-cost and easily adoptable IoT-based BLE sensor sets on independent living elders and discussed the troubles and limitations of the experiment. By grasping the pros and cons of IoT-based BLE sensor sets, this study seeks to improve the accessibility and usability of smart home systems for the elderly population in independent living arrangements.

A Fault Detection Scheme in Acoustic Sensor Systems Using Multiple Acoustic Sensors (다중 센서를 이용한 음향 센서 시스템의 고장 진단)

  • Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.203-208
    • /
    • 2016
  • This paper presents a fault detection and data processing algorithm for acoustic sensor systems using the multiple sensor algorithm that has originally developed for the wireless sensor nodes. The multiple sensor algorithm can increase the reliability of the sensor systems by utilizing and comparing the measurements of the multiple sensors. In the acoustic sensor system, the equivalent sound level($L_{eq}$) is used to detect the faulty sensor. The experiment was conducted to demonstrate the feasibility of the multiple acoustic sensor algorithm, and the results show that the algorithm can detect the faulty sensor and validate the data.

Improved Resolution of Paper-based Sensor for Proline Detection by Low-temperature Drying of Ninhydrin Solution (닌히드린 용액의 저온 건조에 의한 프롤린 검출을 위한 종이기반 센서의 분해능 개선)

  • Ji-Kwan, Kim;Young-Soo, Choi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.428-432
    • /
    • 2022
  • In this study, we describe the improvement of the resolution of a paper-based sensor by fabricating a high-concentration ninhydrin part using a low-temperature drying method to detect proline with high resolution. In the conventional paper-based sensor for detecting proline, the ninhydrin part is fabricated at room temperature, and in this process, the ninhydrin solution spreads around the ninhydrin part. Therefore, the concentration of the ninhydrin part becomes lower than that of the applied solution, lowering the resolution of the sensor. The proposed paper-based sensor better improved the sensitivity of the sensor compared to the existing sensor by fabricating a high-concentration ninhydrin part through drying the ninhydrin solution using a low-temperature drying method. Owing to the experiment, the intensity of the green color of the paper-based sensor with the integrated ninhydrin part fabricated at 10 ℃ is approximately 20% lower than the paper-based sensor with an integrated ninhydrin part fabricated at room temperature, indicating better sensor resolution. Therefore, the paper-based sensor with an integrated ninhydrin part fabricated at a high concentration could be useful for diagnosing drought.