• Title/Summary/Keyword: expected life-cycle cost

Search Result 147, Processing Time 0.03 seconds

An Object-Oriented Process Modeling for the Development of the Integrated Logistics Support (민간부문에서의 ILS 개발에 관한 연구 - 객체지향 물류 프로세스 모델링의 응용을 중심으로)

  • 고일상;김재전
    • The Journal of Society for e-Business Studies
    • /
    • v.3 no.2
    • /
    • pp.179-202
    • /
    • 1998
  • This study reviews the concept of Integrated Logistic Support(ILS), ILS standards, ILS elements, and the processes of developing ILS elements and Logistics Support Analysis(LSA). It also examines the potentials of applying ILS development process to building CALS systems in commercial sectors in order to accomplish business process innovation and achieve life-cycle cost savings in product and equipment management. In order to utilize the ILS approach for commercial industries, we need customizing the process of Logistics Support Analysis defined in MIL-STD-1388-lA. The success of ILS implementation depends on the determination of the range of ILS elements in relation with the application environment, and the appropriate development of those elements. During the development process, in order to analyze and design logistics flow processes and supporting activities, we suggest the object-oriented logistics process modeling approach with basic concepts and constructs embedded in objects. Several diagrams including Class Diagram, Class-Instance Diagram, and Integrated Instance Diagram, are provided. Simple Steps to follow are suggested for the analysis and design of inter-organizational logistics flow and support processes. The outcomes of the study are expected to contribute to stimulating the utilization of ILS concepts and development process during building commercial CALS systems.

  • PDF

A Numerical Analysis of Heat Transfer in Bright Annealing Furnace of Stainless Steel Strip (Strainless steel strip 광휘어닐링로 내의 열전달 해석)

  • Ryou, H.S.;Jeong, Y.T.;Jang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2009
  • In order to predict the temperature distribution of stainless steel strip in Bright Annealing (BA) furnace, we performed the analysis of heat transfer and fluid flow using STAR-CCM+. The analysis model included unsteady fluid flow, heat transfer with radiation and moving grid. Two kinds of radiative properties, emissivity and reflectivity, were applied to the stainless steel strip, one is constant and the other is variable with time. As we call, the BA furnaces of stainless steel strip have two different types, muffle and no-muffle. The using of muffle type has been faced with some problems such as rising in material price and shortening of life cycle, etc. So the development of no-muffle type BA furnace is very important in order to save energy cost, lower environmental load and increase the productivity. The designed (or expected) temperature of stainless steel strip coming out of BA furnace was about $1065^{\circ}C$ while the environment temperature maintains around $1100^{\circ}C$. The result of our calculation was very close (or similar) to design temperature, and the application of radiative properties variable with time produced more accurate result than applying constant ones.

Asset Evaluation Method for Road Pavement Considering Life Cycle Cost (생애주기비용을 고려한 도로포장의 자산가치 평가에 대한 연구)

  • Do, Myungsik;Kim, Jeunghwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.63-72
    • /
    • 2009
  • This study aims at establishing the decision-making support system for the highway assets, long-term performance presumption and evaluation of asset value, which are appropriate for Korea, and proposing the methods of the optimal engineering method and the timing decision for the preventive maintenance through the project evaluation, the optimization method and life-cycle analysis related to the highways. In order to supplement the current problem of the near-sighted budget management system, which chooses the maintenance place of the highway, depending on the level of the budget with fixed amount, the long-term required budget prediction system and the economy principle were introduced, so that the pavement agency can predict the level of the required budget, and it was aimed to develop the pavement asset evaluation system to maintain the performance of the highway with the minimum of the cost. In the use of the highway pavement asset evaluation system, to maintain the appropriate level of the pavement evaluation index, when the budget was efficiently established in the reference of the required maintenance budget for the chosen section of the highway in the year concerned, it was possible to analyze the most rational pavement maintenance budget. With this result, it is estimated to prevent the unnecessary waste of budget in advance, and through the development of the decision-making system for the long-term performance presumption and the asset value estimation of the pavement, it is expected to able to analyze the previous evaluation of the project related to the highway and the feasibility of introduction.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

A Study on the Feasibility of IGCC under the Korean Electricity Market (국내 전력거래제도하에서 IGCC 사업성 확보를 위한 정책 제언)

  • Ko, Kyung-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.118-127
    • /
    • 2011
  • An IGCC was evaluated as one of the next generation technologies that would be able to substitute for coal-fired power plants. According to "The 4th Basic Plan of Long-term Electricity Supply & Demand" which is developed by the Electricity Business Acts, the first IGCC will be operated at 2015. Like other new and renewable energy such as solar PV, Fuel cell, The IGCC is considered as non-competitive generation technology because it is not maturity technology. Before the commercial operation of an IGCC in our electricity market, its economic feasibility under the Korean electricity market, which is cost-based trading system, is studied to find out institutional support system. The results of feasibility summarized that under the current electricity trading system, if the IGCC is considered like a conventional plant such as nuclear or coal-fired power plants, it will not be expected that its investment will be recouped within life-time. The reason is that the availability of an IGCC will plummet since 2016 when several nuclear and coal-fired power plants will be constructed additionally. To ensure the reasonable return on investment (NPV>0 IRR>Discount rate), the availability of IGCC should be higher than 77%. To do so, the current electricity trading system is amended that the IGCC generator must be considered as renewable generators to set up Price Setting Schedule and it should be considered as pick load generators, not Genco's coal fired-generators, in the Settlement Payment.

A Conceptual Analysis of Household Migration Decisions (가구의 이동결정에 관한 개념적고찰)

  • 김헌민
    • Korea journal of population studies
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 1991
  • Migration studies that assume that decision making is done on an individual basis is overlooking the importance of the family factor. Considering that must people belong to families, it is more appropriate to view migration decision from the perspective of the family. This study analyzes the household migration decision whereby the alternatives are to stay, 10 undertake family migration or to undertake single migration of a member. In developing a conceptual model of household migration decision, it is assumed that the household's objective is to maximize household income which is a function of individual members' earnings. The benefits and costs of household migration and individual migration are identified and the household chooses the migration strategy that maximizes expected household income. When household members have conflicting earning prospects in the potential destination, the household considers single migration of the member with the best earning potentials. However, lone migration by a household member involves cost of family separation which is both monetary and psychic, and this study shows that lone migration is undertaken only when its net gains to the family are greater than the separation cost of the family. The major benefit of choosing single migration is the retention of home base in the place of origin which can serve as an insurance against the uncertainty of obtaining a job in the destination, the benefit that is unavailable in family migration. The conceptual analysis shows how a household's migration decision would depend on its members' economic roles and prospects in the destination. Besides the economic variables, social and life cycle variables of the family translate into separation costs and benefits of migration. This study indicates that one - earner family in low economic status but with good earning prospects and high separation costs is more likely to choose family migration over single migration.

  • PDF

Development of an Economic Assessment Model for the Selection of Indoor Air Pollutant Low Emission Material for G-SEED (G-SEED용 실내공기 오염물질 저방출 자재 선정을 위한 경제성 평가 모델 개발)

  • Kwon, Seong-Min;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.289-296
    • /
    • 2021
  • The Korean construction industry has been implementing G-SEED, a certification system that evaluates the environmental properties of buildings for the purpose of reducing environmental burdens such as energy and resource consumption and pollutant emissions. Also, creating a pleasant environment in general is one more purpose of G-SEED certification system. However, G-SEED certification in practice is difficult and time consuming due to the complexity of the certification acquisition process coupled with little economic consideration for the materials of each certification item. Therefore, in this study, we present a model for the optimal selection of materials and economic assessment using a genetic algorithm. The development of the model involves building a material database based on life-cycle costing (LCC) targeted at "Application of Indoor Air Pollutant Low Emission Material" from G-SEED. Next, the model was validated using a real non-residential building case study. The result shows an average cost reduction rate of 74.5 % compared with the existing cost. This model is expected to be used as an economically efficient tool in G-SEED.

Maintenance Performance Improvement Method of the Buildings in Design Phase (설계단계에서 건축물의 유지관리성능 향상 방안;건축계획분야를 중심으로)

  • Yoon, Ho-Bin;Kim, Seung-Jin;Lee, Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.692-697
    • /
    • 2006
  • The importance about the maintenance consideration of the building has a great impact and regarding the life continuation of the building the many interest is becoming intensively. The housing lot of the heart of urban at the capital region has insufficient recently and the construction of the ground complex building in solution for the insufficiency is increasing at the rapid pace. The ground complex building is brings the maximization of land use from inside the site, but maintenance consideration phase is caused by administration cost share and administration bound limit where person is concerned for a many problem point it contains. The objective of the present paper is that the building is maintain an efficiency initially and is improve in order to develop guide line for a maintenance consideration improvement from design phase. According as literature research and question research is enforce, the paper is escape problem point the maintenance consideration and is bring up guide line for the architectural plan field and the maintenance consideration improvement of the building. Result of the study is expected a help in maintenance consideration improvement during life cycle of the building

  • PDF

An Economic Analysis Study of Recycling PET·OPP Laminated Film Waste Generated during DECO Film Manufacturing (DECO 필름 제조시 발생하는 PET·OPP 합성 폐필름 재활용의 경제성 분석 연구)

  • Mi Sook Park;Da Yeon Kim;Soo Jin Yang;Seong You Lee;Chun San Kim;Ok Jin Joung;Yong Woo Hwang
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.57-67
    • /
    • 2023
  • The treatment of waste plastic has primarily been entrusted to small companies, which has resulted in challenges in obtaining an accurate overview of the current state of affairs and ensuring profitability. Consequently, despite the presence of recycling technology, their practical application has proven to be challenging. In this study, as part of the waste plastic material recycling plan, it is assumed that the PET/OPP laminated waste film is peeled off at the waste film generation site for the second use. The recycling rate of PET/OPP delaminated waste film is assumed to be 2%, 10%, and 30% referring to the figures suggested by "Life-cycle Post Plastic Measures" from the Korean government. In this study, a physical separation method was developed as a recycling approach for waste PET. A result of cost-benefit analysis was conducted to evaluate the economic viability of the recycling process based on changes in the recycling rate. The findings indicated that a recycling rate of waste PET was 30% or higher resulted in a cost-benefit ratio (Benefit-cost ratio, BCR) of 1.32, exceeding the threshold of BCR ≥1, which is considered to meet the minimum requirement for cost-benefit balance. As the government's allocation ratio and unit price are expected to increase in the future, the cost-benefit ratio is expected to increase further. This case is expected to serve as a pilot initiative for waste PET recycling and foster profit creation for businesses in similar industries.