• Title/Summary/Keyword: expansive

Search Result 495, Processing Time 0.025 seconds

Hydration of Expansive Materials with CSA-System (CSA계 팽창재료의 수화특성)

  • 정성철;송명신;이경희;한천구
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.631-637
    • /
    • 2002
  • This paper deals with hydration properties of the OPC with CSA-system expansive materials. In OPC using CSA, that was formed monosulfate for the main part. but In OPCs using CSA and gypsum, using CSA and gypsum and lime, that were formed ettringite for the main part. On the shrinkage ratio, the former is larger than the latter And CSA-system with gypsum and lime is smallest of all systems. According to dimension of shrinkage ratios are as follows; OPC using CSA only> OPC only> OPC using CSA and gypsum> OPC using CSA, gypsum and lime. And "R"s are 0.32, 0.37, 0.8, 0.8, 0.8 each others. In OPC with CSA-system expansive materials, we know that expansive properties were depend upon the value of "R". "R" means supplying quantities about demanding quantities for ettringite. In the case of expansive materials with CSA-system and lime, it is to be rich Ca(OH)$_2$ in the solution. so, it is formed small ettringite as the needle shapes. they are contribute to expansive.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

Fundamental and Shrinkage Properties of High Performance Concrete in Combined with Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 조합 사용한 고성능콘크리트의 기초물성 및 수축특성)

  • Han Cheon-Goo;Kim Sung-Wook;Koh Kyoung-Taek;Cheol Han-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.605-612
    • /
    • 2004
  • This study investigated the fundamental properties and shrinkage properties of high performance concrete with water/binder ratio of 0, 30 and with combination of expansive additive and shrinkage reducing agent. According to the results, the fluidity of high performance concrete showed lower the using method in combination with expansive additive and shrinkage reducing agent than the separately using method of that, so the amount of superplasticizer increased when the adding ratio of expansive additive and shrinkage reducing agent increased. However the air content of concrete increased when used in combination with expansive additive and shrinkage reducing agent, so the amount of AR agent decreased. The compressive strength showed the highest at $5\%$ of expansive additive, and decreased with an increase of the amount of shrinkage reducing agent. Furthermore, in order to reduce the shrinkage of high performance concrete, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than separately using method of that. Therefore, it analyzed that the combination of expansive additive of $5\%$ and shrinkage reduction agent of $1\%$ was the most suitable mixture, considering to the fluidity, strength and shrinkage under the condition of this experiment.

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.