• 제목/요약/키워드: expansion behavior modeling

검색결과 47건 처리시간 0.034초

머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링 (Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data)

  • 박지현;신성우;김수용
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Agent-Based Modeling for Studying the Impact of Capacity Mechanisms on Generation Expansion in Liberalized Electricity Market

  • Dahlan, N.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1460-1470
    • /
    • 2015
  • This paper presents an approach to solve the long-term generation expansion planning problem of the restructured electricity industry using an agent-based environment. The proposed model simulates the generation investment decisions taken by a particular agent (i.e. a generating company) in a market environment taking into account its competitors’ strategic investment. The investment decision of a particular company is modeled taking into account that such company has imperfect foresight on the future system development hence electricity prices. The delay in the construction of new plants is also explicitly modeled, in order to compute accurately the yearly revenues of each agent. On top of a conventional energy market, several capacity incentive mechanisms including capacity payment and capacity market are simulated, so as to assess their impact on the investment promotion for generation expansion. Results provide insight on the investment cycles as well as dynamic system behavior of long-term generation expansion planning in a competitive electricity industry.

인접 홀의 영향을 받는 홀 확장 잔류응력의 유한요소해석 (Finite Element Analysis of the Residual Stress by Cold Expansion Method under the Influence of Adjacent Holes)

  • 김철;양원호;석창성;김대진
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.79-84
    • /
    • 2003
  • 홀 확장법은 홀 주위에 압축 잔류응력층을 생성시킴으로서 균열 발생을 지연시키는 방법으로 항공산업 분야에서 널리 사용되고 있다. 홀 확장 잔류응력의 분포는 홀 확장률, 맨드럴 삽입방향, 재료 물성치 등 여러 가지 홀 확장 피라미터에 따라 달라진다. 홀 확장 잔류응력층의 정확한 파악은 항공산업의 실제 설계에 있어서 매우 중요함에도 불구하고 이에 대한 연구는 상대적으로 부족하였다. 본 연구에서는 유한요소해석을 통하여 두 개의 인전한 홀에 홀 확장법을 적용하는 경우 대한 잔류응력 분포를 구하였다. 연구 결과 두개 홀에 동시에 홀 확장을 하는 경우가 순차적으로 홀 확장으로 하는 경우보다 더 유리한 잔류응력 분포를 얻을 수 있었다.

Compression field modeling of confined concrete

  • Montoya, E.;Vecchio, F.J.;Sheikh, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.231-248
    • /
    • 2001
  • The three-dimensional behavior of confined concrete was investigated, including strength enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining constitutive models proposed by several researchers. The capability of compression field based models to reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from tested specimens were used to evaluate the validity of the formulations. Good agreement with the experimental results was obtained.

장경간 청담대교에서 궤도의 변위와 구조불간의 상호작용에 관한 연구 (A study on interaction of track displacement and structure on long span Cheongdam Bridge)

  • 김순철;박석순;이종득;강정옥;한광섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.117-122
    • /
    • 2003
  • Cheongdam Bridge in Seoul Metropolitan Subway Line No.7 recently constructed has 180 meters (2@90m) of expansion length of structure (distance between fixed points). Track type is all ballasted track and rail expansion joint is installed at every movable point. However, there is no expansion joint at the transition area between ballasted track ,end deck. By this reason, the rail buckling has been occurred every year and there is actually an abnormal behavior in expansion. In this study, based on the modeling of the Cheongdam Bridge, the element of interacting relationship between track and structure which is influential to track displacement in long-span bridge was analyzed and, finally, the methodology to ensure the continuous-welded rail in Cheongdam Bridge was suggested.

  • PDF

가상 고정물을 이용한 축 대칭 용접물의 용접 변형 해석 모델링 기법 (Modeling Techniques using Virtual Fixture for Analysing the Shrinkage of Axi-symmetric Welded Structures)

  • 이호진;이봉상;정인철;심덕남
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.60-65
    • /
    • 2010
  • Although two dimensional axi-symmetric modeling is useful for calculating the residual stresses of a cylindrical weldment such as a core barrel, this conventional axi-symmetric modeling can not express the behavior of shrinkage well in the locally heated weld zone. New technique of two dimensional axi-symmetric modeling using a virtual fixture is suggested to simulate the behavior of dimensional changes in the weld zone during the heating period of the welding. The virtual fixture in the model has a role to restrain the expansion of the high temperature heated region, which simulates equivalent intrinsic restraint effect of the weldment. In the restraint condition of the virtual fixture above the critical yield strength, the calculated shrinkages by using the suggested axi-symmetric model agreed well with those measured in a welded mock-up. The calculated residual stresses by using the suggested axi-symmetric model also agreed well with those calculated by using conventional axi-symmetric model which has beenused for calculating residual stresses in the weldment.

고온용 복합재료의 크립 거동에 있어서 구성요소의 영향에 대한 연구 (A Study on the Influence of its Constituents on the Creep Behavior of High Temperature Composite Materials)

  • 박용환
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.45-53
    • /
    • 1998
  • A method to predict the creep behavior of fiber-reinforced ceramic composites at high temperatures was suggested based on finite element modeling using constituent creep equations of fiber and matrix and showed good agreement with the experimental results. The effects of matrix creep behavior, fiber volume fraction, and residual stresses on the composite creep behavior were also investigated. The results showed that the primary behavior of composites was greatly affected by that of matrix but post-primary behavior was governed by fiber creep characteristics. The increase of fiber volume fraction from 15 vol% to 30 vol% caused the 50% and 40% decrease of steady-state creep rates and total creep strains at $1200^{\circ}C$, 180MPa, respectively. Feasible compressive residual stresses in the matrix caused by different thermal expansion coefficients between the fiber and the matrix could significantly reduce total creep strains of the composite. The creep deformation mechanism in the fiber-reinforced ceramic composites could be explained by the stress transfer and redistribution in the fiber and matrix due to different creep characteristics of its constituents.

  • PDF

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

Modeling of damage in cement paste subject to external sulfate attack

  • Xiong, Chuansheng;Jiang, Linhua;Zhang, Yan;Chu, Hongqiang
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.847-864
    • /
    • 2015
  • This study aimed to develop models of sulfate diffusion and ettringite content profile in cement paste for the predication of the damage behavior in cement paste subject to external sulfate. In the models, multiphase reaction equilibrium between ions in pore solution and solid calcium aluminates phases and the microstructure changes in different positions of cement paste were taken into account. The distributions of expansive volume strain and expansion stress in cement paste were calculated based on the ettringite content profile model. In addition, more sulfate diffusion tests and SEM analyses were determined to verify the reliability and veracity of the models. As the results shown, there was a good correlation between the numerical simulation results and experimental evidences. The results indicated that the water to cement ratio (w/c) had a significant influence on the diffusion of sulfate ions, ettringite concentration profile and expansion properties in cement paste specimens. The cracking points caused by ettringite growth in cement paste specimens were predicted through numerical methods. According to the simulation results, the fracture of cement paste would be accelerated when the specimens were prepared with higher w/c or when they were exposed to sulfate solution with higher concentration.

유한요소법을 이용한 홀 확장 잔류응력 해석 (Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method)

  • 김철;양원호;허성필;정기현
    • 한국항공우주학회지
    • /
    • 제30권2호
    • /
    • pp.46-51
    • /
    • 2002
  • 홀 확장법은 홀 주위에 압축 잔류응력 층을 생성시킴으로서 균열 발생을 지연시키는 방법으로 항공산업 분야에서 널리 사용되고 있다. 홀 확장잔류응력의 분포는 홀 확장률, 맨드럴 삽입방향, 재료 물성치 등 여러 가지 홀 확장 파라미터에 따라 달리진다. 홀 확장 잔류응력 층의 정확한 파악이 항공사업의 실제 설계에 있어서 매우 중요함에도 불구하고 이에 대한 연구는 상대적으로 부족하였다. 본 연구에서는 3차원 유한요소해석을 통하여 알루미늄 평판에 홀 확장법을 적용하는 경우의 잔류응력 분포를 예측하고자 하였다. 유한요소해석의 타당성을 검증하기 위하여 스트레인 게이지를 이용한 홀 확장 잔류변형률을 측정하였으며, 홀 확장률과 2단 홀 확장이 잔류응력 분포에 미치는 영향을 파악하였다. 2단 홀 확장을 적용함으로써 최대 압축 잔류응력의 크기가 약 7% 향상됨을 알 수 있었다.