• Title/Summary/Keyword: expansion behavior

Search Result 852, Processing Time 0.024 seconds

Compression field modeling of confined concrete

  • Montoya, E.;Vecchio, F.J.;Sheikh, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.231-248
    • /
    • 2001
  • The three-dimensional behavior of confined concrete was investigated, including strength enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining constitutive models proposed by several researchers. The capability of compression field based models to reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from tested specimens were used to evaluate the validity of the formulations. Good agreement with the experimental results was obtained.

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

Evaluation on Behavior Characteristics of a Pocketable Expansion Material for Ground Cavity Based on Wheel Tracking Test Results (휠트래킹 시험을 통한 포켓형 지반공동 긴급복구 팽창재료의 거동특성 평가)

  • Park, Jeong-Jun;Kim, Ju-Ho;Kim, Ki-Sung;Kim, Dongwook;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2018
  • This paper described a results of dynamic stability by using wheel tracking test and unconfined compression test, in order to evaluate behavior characteristics on the developed pocketable expansion material for emergency restoration of ground cavity. The wheel tracking test result showed that the settlement increment ratio of the recovered ground by the expansion material was decreased compared to the sandy ground in high load condition. That is, it was confirmed that the expansion material was able to restrain the settlement due to the material stiffness, and the same results were obtained for the dynamic stability evaluation results. From the results of unconfined compression test, the pocketable expansion material was found to be able to fully support load on the restored cavity.

Agent-Based Modeling for Studying the Impact of Capacity Mechanisms on Generation Expansion in Liberalized Electricity Market

  • Dahlan, N.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1460-1470
    • /
    • 2015
  • This paper presents an approach to solve the long-term generation expansion planning problem of the restructured electricity industry using an agent-based environment. The proposed model simulates the generation investment decisions taken by a particular agent (i.e. a generating company) in a market environment taking into account its competitors’ strategic investment. The investment decision of a particular company is modeled taking into account that such company has imperfect foresight on the future system development hence electricity prices. The delay in the construction of new plants is also explicitly modeled, in order to compute accurately the yearly revenues of each agent. On top of a conventional energy market, several capacity incentive mechanisms including capacity payment and capacity market are simulated, so as to assess their impact on the investment promotion for generation expansion. Results provide insight on the investment cycles as well as dynamic system behavior of long-term generation expansion planning in a competitive electricity industry.

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF

Development of Bridge Expansion Joint for Fiber Reinforced Polymer Deck (FRP바닥판용 신축이음장치 개발)

  • Lee, Young-Ho;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.348-353
    • /
    • 2007
  • This paper presents design specifications and characteristics of bridge expansion joints to develop new type-joints in fiber reinforced polymer decks. Based on properties of the fiber reinforced polymer decks and fundamental process to calculate their expansion length, new expansion joints fur fiber reinforced polymer decks on typical steel or concrete girder are developed and proposed.

  • PDF

Analysis of CWR track on the High-Speed Railway Bridges considering the Expansion Length of Bridge Deck (고속철도교량의 온도신축길이 변화를 고려한 교량상 장대레일의 거동 해석)

  • Kang Jae-Yoon;Kim Byung-Suk;Kwark Jong-Won;Choi Eun-Suk;Chin Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.806-811
    • /
    • 2004
  • Currently, in the design criteria for the high speed railway bridges, the maximum distance between bridge expansion joint is limited to 80m using a continuous welded mil, in order to limit the additional stress in the rail due to the rail-bridge interaction. In the past study on the resonance effect of HSR train, it is known that the reduction of resonance and dynamic responses of bridge deck occurs at the specific expansion length of 28.05m and 46.75m. In this study, the stability of track structure on the HSR bridges with expansion length of 90m has checked by finite element method. And the track behavior including mil stresses and relative displacements are compared to the current state of track structures on the bridge system with 80m long expansion length.

  • PDF

A Study on the High Temperature Properties (Compressive Strength, Expansion) of Synthetic Sand using Domestic Silica Sand (Mooryang Silica Sand) (국내규사(國內硅砂)를 사용(使用)한 합성사(合成砂)의 고온성질(高溫性質) (압축강도(壓縮强度), 팽장(膨張)) 에 관(關)한 연구(硏究))

  • Yun, Byung-Guk;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.2 no.4
    • /
    • pp.2-8
    • /
    • 1982
  • The behavior of sand and mold at high temperatures was generally agreed to importantly affect the quality of castings made. By changing water content through 2,4,6 and 8%, and bentonite content through 5,7,9 and 11%, specimens have been made according to the respective composition. Specimens have been subjected to hot compressive strength and thermal expansion at 400, 600, 800 and $1000^{\circ}C$ respectively. The results obtained were as follows ; 1. At each temperature, thermal expansion decreased and hot compressive strength increased with the increase in water content. 2. After thermal expansion was peaked at approximately $1000^{\circ}C$ the contraction and maximum hot compressive strength appeared. 3. At each temperature, maximum hot compressive strength appeared 2%, 4,6% and 8% water content for 7%, 9% and 11% bentonite content respectively. 4. When 2% $H_2O$ was added, though bentonite content was increased, hot compressive strength did not rarely change. 5. Until the thermal expansion was completed the required time was 15-18 minutes at $400^{\circ}C$ and $600^{\circ}C$, and 10-13 minutes at $800^{\circ}C$. At $1000^{\circ}C$, the required time was 7-9 minutes in order to gain the maximum expansion, after that, contraction proceeded during 3-4 minutes before expansion was completed.

  • PDF

Long-term Monitoring of Expansion of Cement Concrete Pavement Affected by Alkali-Aggregate Reaction (알칼리-골재 반응에 의한 콘크리트 포장 팽창 장기 모니터링)

  • Hong, Seung-Ho;Shim, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.13-20
    • /
    • 2015
  • PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.

Study on Optimum Shape of Expansion Joint (신축조인트의 최적화형상에 대한 연구)

  • Han, Moonsik;Ahn, Junghyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-158
    • /
    • 2013
  • Expansion joint has been utilized in many areas including automotive bellows for exhaust system. Usage of expansion joint has been increased due to its inherent flexibility and excellent anti-vibration property. Simple shape of expansion joint is modeled to understand the behavior of joint system. 27 design cases using 3 design factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential design factors. Response for this study, maximum stress in the expansion joint, has been used to determine main design factors of joint. Among the 3 design factors, factor B has affected greatly a response in the formation of optimum shape of joint. Also, interaction factor, $A{\times}B$, has also showed its influence to the response of joint. This study showed that design of experiment combined with finite element analysis could be used in the design decision process effectively in the design of expansion joint.