• 제목/요약/키워드: expansion algorithm

검색결과 537건 처리시간 0.027초

신뢰성있는 네트워크 확장을 위한 위상설계 (Topological Design of Reliable Network Expansion)

  • 염창선;이한진
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2004년도 추계학술대회
    • /
    • pp.37-41
    • /
    • 2004
  • The existing network can be expanded with addition of new nodes and multiple choices of link type for each nossible link. In this paper, the design problem of network expansion is defined as finding the network topology minimizing cost subject to reliability constraint. To efficiently solve the problem, an genetic algorithm approach is suggested.

  • PDF

An Efficient Algorithm for Simultaneous Elliptic Curve Scalar Multiplication

  • Kim, Ki-Hyung;Ha, Jae-Cheol;Moon, Sang-Jae
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2003년도 동계학술대회
    • /
    • pp.412-416
    • /
    • 2003
  • This paper introduces a new joint signed expansion method for computing simultaneous scalar multiplication on an elliptic curve and a modified binary algorithm for efficient use of the new expansion method. The proposed expansion method can be also be used in cryptosystems such as RSA and EIGamal cryptosystems.

  • PDF

Scalar Multiplication on Elliptic Curves by Frobenius Expansions

  • Cheon, Jung-Hee;Park, Sang-Joon;Park, Choon-Sik;Hahn, Sang-Geun
    • ETRI Journal
    • /
    • 제21권1호
    • /
    • pp.28-39
    • /
    • 1999
  • Koblitz has suggested to use "anomalous" elliptic curves defined over ${\mathbb{F}}_2$, which are non-supersingular and allow or efficient multiplication of a point by and integer, For these curves, Meier and Staffelbach gave a method to find a polynomial of the Frobenius map corresponding to a given multiplier. Muller generalized their method to arbitrary non-supersingular elliptic curves defined over a small field of characteristic 2. in this paper, we propose an algorithm to speed up scalar multiplication on an elliptic curve defined over a small field. The proposed algorithm uses the same field. The proposed algorithm uses the same technique as Muller's to get an expansion by the Frobenius map, but its expansion length is half of Muller's due to the reduction step (Algorithm 1). Also, it uses a more efficient algorithm (Algorithm 3) to perform multiplication using the Frobenius expansion. Consequently, the proposed algorithm is two times faster than Muller's. Moreover, it can be applied to an elliptic curve defined over a finite field with odd characteristic and does not require any precomputation or additional memory.

  • PDF

영역 확장법을 통한 평면에서 원들의 보로노이 다이어그램의 강건한 계산 (Robust Construction of Voronoi Diagram of Circles by Region-Expansion Algorithm)

  • 김동욱
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.52-60
    • /
    • 2019
  • This paper presents a numerically robust algorithm to construct a Voronoi diagram of circles in the plane. The circles are allowed to have intersections among them, but one circle cannot fully contain another circle. The Voronoi diagram is a tessellation of the plane into Voronoi regions of given circles. Each circle has its Voronoi region which is defined by a set of points in the plane closer to the circle than any other circles. The distance from a point p to a circle $c_i$ of center $p_i$ and radius $r_i$ is ${\parallel}p-p_i{\parallel}-r_i$, which is the closest Euclidean distance from p to the circle boundary. The proposed algorithm first constructs the point Voronoi diagram of centers of given circles, then it enlarges each point to the circle and expands its Voronoi region accordingly. This region-expansion process is done by local modifications and after completing this process for the whole circles the desired circle Voronoi diagram can be obtained. The proposed algorithm is numerically robust and we provide with a few examples to show its robustness. The algorithm runs in $O(n^2)$ time in the worst case and O(n) time on average where n is the number of the circles. The experiment shows that the region-expansion algorithm is robust and runs fast with strong linear time behavior.

최적화 기법에 의한 발전시뮬레이션 방법론의 개발 및 전원확충계획 문제에의 적용 (The Development of Production Simulation Methodology by Optimization Technique and It's Application to Utility Expansion Planning)

  • 송길영;오광해;김용하;차준민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.793-796
    • /
    • 1996
  • This study proposes a new algorithm which performs a production simulation under various constraints and maintains computational efficiency. In order to consider the environmental and operational constraints, the proposed algorithm is based on optimization techniques formulated in LP form In the algorithm, "system characteristic constraints" reflect the system characteristics such as LDC shape, unit loading order and forced outage rate. By using the concept of Energy Invariance Property and two operational rules i.e. Compliance Rule for Emission Constraint, Compliance Rule for Limited Energy of Individual Unit, the number of system characteristic constraints is appreciably reduced. As a solution method of the optimization problem, the author uses Karmarkar's method which performs effectively in solving large scale LP problem. The efficiency of production simulation is meaningful when it is effectively used in power system planning. With the proposed production simulation algorithm, an optimal expansion planning model which can cope with operational constraints, environmental restriction, and various uncertainties is developed. This expansion planning model is applied to the long range planning schemes by WASP, and determines an optimal expansion scheme which considers the effect of supply interruption, load forecasting errors, multistates of unit operation, plural limited energy plants etc.

  • PDF

물류시스템에서 물류센터의 크기 확장계획모형에 대한 유전알고리듬 (Genetic Algorithm for Capacity Expansion Planning Model of the Distribution Centers in a Distribution System)

  • 장석화;김재곤
    • 산업경영시스템학회지
    • /
    • 제32권2호
    • /
    • pp.1-12
    • /
    • 2009
  • Distribution centers in a distribution system that consists of the distribution centers and retailers supplies products to retailers. At the present, although total capacity of the distribution centers are enough to supply total demand of retailers, capacity of the distribution centers need to be expanded to satisfy the demand of retailers in case that future demand of the retailers will be increased. Capacity expansion model in a distribution system is to determine the location and size of expansion distribution centers that minimize costs among given distribution centers. Transportation amount from distribution center to retailers also is determined. The costs factors are the capacity expansion costs of the distribution centers and the transportation costs from the distribution centers to the retailers. A model is formulated, and a genetic algorithm based solution procedure is developed. A numerical example is shown and the algorithm is analyzed through examples.

A HIGHER ORDER ITERATIVE ALGORITHM FOR MULTIVARIATE OPTIMIZATION PROBLEM

  • Chakraborty, Suvra Kanti;Panda, Geetanjali
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.747-760
    • /
    • 2014
  • In this paper a higher order iterative algorithm is developed for an unconstrained multivariate optimization problem. Taylor expansion of matrix valued function is used to prove the cubic order convergence of the proposed algorithm. The methodology is supported with numerical and graphical illustration.

Topological Derivative for Fast Imaging of Two-Dimensional Thin Dielectric Inclusions in The Wave Propagation Environment

  • Park, Won-Kwang
    • Journal of electromagnetic engineering and science
    • /
    • 제11권1호
    • /
    • pp.56-61
    • /
    • 2011
  • In this paper, we consider the topological derivative concept for developing a fast imaging algorithm of thin inclusions with dielectric contrast with respect to an embedding homogeneous domain with a smooth boundary. The topological derivative is evaluated by applying asymptotic expansion formulas in the presence of small, perfectly conducting cracks. Through the careful derivation, we can design a one-iteration imaging algorithm by solving an adjoint problem. Numerical experiments verify that this algorithm is fast, effective, and stable.

Mode shape expansion with consideration of analytical modelling errors and modal measurement uncertainty

  • Chen, Hua-Peng;Tee, Kong Fah;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.485-499
    • /
    • 2012
  • Mode shape expansion is useful in structural dynamic studies such as vibration based structural health monitoring; however most existing expansion methods can not consider the modelling errors in the finite element model and the measurement uncertainty in the modal properties identified from vibration data. This paper presents a reliable approach for expanding mode shapes with consideration of both the errors in analytical model and noise in measured modal data. The proposed approach takes the perturbed force as an unknown vector that contains the discrepancies in structural parameters between the analytical model and tested structure. A regularisation algorithm based on the Tikhonov solution incorporating the L-curve criterion is adopted to reduce the influence of measurement uncertainties and to produce smooth and optimised expansion estimates in the least squares sense. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is then utilised to demonstrate the applicability of the proposed expansion approach to the actual structure. The results from the benchmark problem studies show that the proposed approach can provide reliable predictions of mode shape expansion using only limited information on the operational modal data identified from the recorded ambient vibration measurements.

Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM)

  • Jung, B.K.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.819-837
    • /
    • 2016
  • The quality of vibration pattern reproduction of elastic structures by the modal expansion method is influenced by the modal expansion method and the sensor placement as well as the accuracy of measured natural modes and the total number of vibration sensors. In this context, this paper presents an improved numerical method for reproducing the vibration patterns by introducing a block-wise modal expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is made block by block with different natural modes and different modal participation factors. A hollow cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the numerical experiments, the proposed method is compared with several conventional methods to justify that the proposed method provides the improved results.