References
- D. Alvarez, O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., vol. 228, pp. 5710-5721, 2009. https://doi.org/10.1016/j.jcp.2009.04.038
- F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, "Inverse electromagnetic scattering in a twolayered medium with an application to mine detection," Inverse Problems, vol. 24, 015002, 2008. https://doi.org/10.1088/0266-5611/24/1/015002
- O. Dorn, D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, vol. 22, R67-R131, 2006. https://doi.org/10.1088/0266-5611/22/4/R01
- W.-K. Park, D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, vol. 25, 085010, 2009. https://doi.org/10.1088/0266-5611/25/8/085010
- M. Cheney, "The linear sampling method and the MUSIC algorithm," Inverse Problems, vol. 17, pp. 591-595, 2001. https://doi.org/10.1088/0266-5611/17/4/301
- D. Colton, H. Haddar, and P. Monk, "The linear sampling method for solving the electromagnetic inverse scattering problem," SIAM J. Sci. Comput., vol. 24, pp. 719-731, 2002.
- W.-K. Park, D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., vol. 228, pp. 8093-8111, 2009. https://doi.org/10.1016/j.jcp.2009.07.026
- W.-K. Park, D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, vol. 25, 075002, 2009. https://doi.org/10.1088/0266-5611/25/7/075002
- W.-K. Park, "Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix," Progress in Electromagnetic Research, vol. 106, pp. 225-241, 2010. https://doi.org/10.2528/PIER10052506
- W.-K. Park, "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, vol. 26, 074008, 2010. https://doi.org/10.1088/0266-5611/26/7/074008
- H. Ammari, H. Kang, H. Lee, and W.-K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., vol. 32, pp. 894-922, 2010. https://doi.org/10.1137/090749013
- D. Auroux, M. Masmoudi, "Image processing by topological asymptotic analysis," ESAIM Proc., vol. 26, pp. 24-44, 2009. https://doi.org/10.1051/proc/2009003
- A. Capiro, M.-L. Rapun, "Solving inhomogeneous inverse problems by topological derivative methods," Inverse Problems, vol. 24, 045014, 2008. https://doi.org/10.1088/0266-5611/24/4/045014
- H. A. Eschenauer, V. V. Kobelev, and A. Schumacher, "Bubble method for topology and shape optimization of structuresn," Struct. Optim., vol. 8, pp. 42-51, 1994. https://doi.org/10.1007/BF01742933
- J. Sokolowski, A. Zochowski, "On the topological derivative in shape optimization," SIAM J. Control Optim., vol. 37, pp. 1251-1272, 1999. https://doi.org/10.1137/S0363012997323230
- W.-K. Park, "On the imaging of thin dielectric inclusions via topological derivative concept," Progress in Electromagnetic Research, vol. 110, pp. 237-252, 2010. https://doi.org/10.2528/PIER10101305
Cited by
- Shape Reconstruction of Thin Electromagnetic Inclusions via Boundary Measurements: Level-Set Method Combined with the Topological Derivative vol.2013, 2013, https://doi.org/10.1155/2013/125909
- Improved subspace migration for imaging of small and arc-like perfectly conducting cracks vol.28, pp.4, 2014, https://doi.org/10.1080/09205071.2013.866526