• Title/Summary/Keyword: expanded MDR

Search Result 11, Processing Time 0.031 seconds

Statistical Interaction for Major Gene Combinations (우수 유전자 조합 선별을 위한 통계적 상호작용 방법비교)

  • Lee, Jea-Young;Lee, Yong-Won;Choi, Young-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.693-703
    • /
    • 2010
  • Diseases of human or economical traits of cattles are occured by interaction of genes. We introduce expanded multifactor dimensionality reduction(E-MDR), dummy multifactor dimensionality reduction(D-MDR) and SNPHarvester which are developed to find interaction of genes. We will select interaction of outstanding gene combinations and select final best genotype groups.

A Study on the Comparison between E-MDR and D-MDR in Continuous Data (연속형 데이터에서 E-MDR과 D-MDR방법 비교)

  • Lee, Jea-Young;Lee, Ho-Guen
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.579-586
    • /
    • 2009
  • We have used multifactor dimensionality reduction(MDR) method to study interaction effect of statistical model in general. But MDR method cannot be applied in all cases. It can be applied to the only case-control data. So, two methods are suggested E-MDR and D-MDR method using regression tree algorithm and dummy variables. We applied the methods on the identify interaction effects of single nucleotide polymorphisms(SNPs) responsible for longissimus mulcle dorsi area(LMA), carcass cold weight(CWT) and average daily gain(ADG) in a Hanwoo beef cattle population. Finally, we compare the results using permutation test.

EFMDR-Fast: An Application of Empirical Fuzzy Multifactor Dimensionality Reduction for Fast Execution

  • Leem, Sangseob;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.37.1-37.3
    • /
    • 2018
  • Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, in this study, we implemented EFMDR using RCPP ($c^{{+}{+}}$ package) for faster executions. Our implementation for faster EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.

A Comparison Study on SVM MDR and D-MDR for Detecting Gene-Gene Interaction in Continuous Data (연속형자료의 유전자 상호작용 규명을 위한 SVM MDR과 D-MDR의 방법 비교)

  • Lee, Jong-Hyeong;Lee, Jea-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.413-422
    • /
    • 2011
  • We have used a multifactor dimensionality reduction(MDR) method to study the major gene interaction effect in general; however, without application of the MDR method in continuous data. In light of this, many methods have been suggested such as Expanded MDR, Dummy MDR and SVM MDR. In this paper, we compare the two methods of SVM MDR and D-MDR. In addition, we identify the gene-gene interaction effect of single nucleotide polymorphisms(SNPs) associated with economic traits in Hanwoo(Korean cattle). Lastly, we discuss a new method in consideration of the advantages that the other methods present.

Important SNPs Identification from the Economic Traits for the High Quality Korean Cattle (고품질 한우를 위한 여러 경제형질에서의 주요 SNP 규명)

  • Lee, Jea-Young;Kim, Dong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In order to make the high quality Korean cattle, it has been identified the gene markers which influence to various economic traits. To identify statistically significances among SNP markers, Lee et. al. (2008b) identified SNP(19_1)$^*$SNP(28_2) marker was an important marker in LMA(longissimus muscle dorsi area). In addition, CWT(carcass cold weight) and ADG(average daily gain) are applied for expanded multifactor dimensionality reduction (expanded MDR) method from the comprehensive economic traits. The results showed that SNP(19_1)$^*$SNP(28_2) interaction marker was good and a very meaningful for economic traits.

Multifactor Dimensionality Reduction (MDR) Analysis to Detect Single Nucleotide Polymorphisms Associated with a Carcass Trait in a Hanwoo Population

  • Lee, Jea-Young;Kwon, Jae-Chul;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.784-788
    • /
    • 2008
  • Studies to detect genes responsible for economic traits in farm animals have been performed using parametric linear models. A non-parametric, model-free approach using the 'expanded multifactor-dimensionality reduction (MDR) method' considering high dimensionalities of interaction effects between multiple single nucleotide polymorphisms (SNPs), was applied to identify interaction effects of SNPs responsible for carcass traits in a Hanwoo beef cattle population. Data were obtained from the Hanwoo Improvement Center, National Agricultural Cooperation Federation, Korea, and comprised 299 steers from 16 paternal half-sib proven sires that were delivered in Namwon or Daegwanryong livestock testing stations between spring of 2002 and fall of 2003. For each steer at approximately 722 days of age, the Longssimus dorsi muscle area (LMA) was measured after slaughter. Three functional SNPs (19_1, 18_4, 28_2) near the microsatellite marker ILSTS035 on BTA6, around which the QTL for meat quality were previously detected, were assessed. Application of the expanded MDR method revealed the best model with an interaction effect between the SNPs 19_1 and 28_2, while only one main effect of SNP19_1 was statistically significant for LMA (p<0.01) under a general linear mixed model. Our results suggest that the expanded MDR method better identifies interaction effects between multiple genes that are related to polygenic traits, and that the method is an alternative to the current model choices to find associations of multiple functional SNPs and/or their interaction effects with economic traits in livestock populations.

Power of Expanded Multifactor Dimensionality Reduction with CART Algorithm (CART 알고리즘을 활용한 확장된 다중인자 차원축소방법의 검정력 평가)

  • Lee, Jea-Young;Lee, Jong-Hyeong;Lee, Ho-Guen
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.667-678
    • /
    • 2010
  • It is important to detect the gene-gene interaction in GWAS(Genome-Wide Association Study). There are many studies about detecting gene-gene interaction. The one is Multifactor dimensionality reduction method. But MDR method is not applied continuous data and expanded multifactor dimensionality reduction(E-MDR) method is suggested. The goal of this study is to evaluate the power of E-MDR for identifying gene-gene interaction by simulation. Also we applied the method on the identify interaction e ects of single nucleotid polymorphisms(SNPs) responsible for economic traits in a Korean cattle population (real data).

Study Gene Interaction Effect Based on Expanded Multifactor Dimensionality Reduction Algorithm (확장된 다중인자 차원축소 (E-MDR) 알고리즘에 기반한 유전자 상호작용 효과 규명)

  • Lee, Jea-Young;Lee, Ho-Guen;Lee, Yong-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1239-1247
    • /
    • 2009
  • Study the gene about economical characteristic of human disease or domestic animal is a matter of grave interest, preserve and elevation of gene of Korea cattle is key subject. Studies have been done on the gene of Korea cattle using EST based SNP map, but it is based on statistical model, therefore there are difference between real position and statistical position. These problems are solved using both EST_based SNP map and Gene on sequence by Lee et al. (2009b). We have used multifactor dimensionality reduction(MDR) method to study interaction effect of statistical model in general. But MDR method cannot be applied in all cases. It can be applied to the only case-control data. So, method is suggested E-MDR method using CART algorithm. Also we identified interaction effects of single nucleotide polymorphisms(SNPs) responsible for average daily gain(ADG) and marbling score(MS) using E-MDR method.

A MDR Location Polling Algorithm for Location Based Alert Service (위치기반 경보서비스를 위한 MDR위치조회 알고리듬)

  • Ahn, Byung-Ik;Yang, Sung-Bong
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.3
    • /
    • pp.89-103
    • /
    • 2006
  • Location-Based Services(LBS) has been varied and expanded rapidly in local and overseas markets due to technology developments and expanded applications of wireless internet. Location Based Alert Service(LBA) capable of automatically furnishing data when entering or outing a specific location is expected to become one of the most important services in LBS. For LBA operation, it is essential to periodically get location information about moving object. However, this can cause a serious system load because system should continuously and largely receive location information of many moving objects. Existing and current methods for location polling of moving object are not suitable for an efficient location acquisition and a search structure required for LBA. In this study, to acquire large-scaled location information for LBA, a MDR moving object location polling algorithm will be suggested to reduce unnecessary location information and decrease system load by using mobility patterns of moving object.

  • PDF

Major genotype identification affecting economic traits in FABP4, SCD, FASN and SREBPs genes of Korean cattle (한우의 FABP4, SCD, FASN, SREBPs 유전자에서 경제형질에 영향을 미치는 우수 유전자형 선별)

  • Lee, Jea-Young;Park, Jae-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1247-1255
    • /
    • 2016
  • Kim and Lee (2015) identified a superior FABP4 gene that improves the grade and fatty acid of Korean cattle. This study selects a superior genotype by expanding genes that influence the economic traits of Korean cattle. Expanded genes are FABP4, SCD, FASN and SREBPs that are related to grade and fatty acid (Oh, 2014). We use the adjusted economic-trait values with environmental factors excluded. We also applied multifactor dimensionality reduction(MDR) method to data of the adjusted economic-trait values. As a result, we identified superior genes and genotypes which improved the grade and fatty acid of Korean cattle.