• Title/Summary/Keyword: exosome

Search Result 53, Processing Time 0.03 seconds

The anti-cancer effect of pomegranate-derived nanovesicles on MDA-MB-231 breast cancer cells (MDA-MB-231 유방암 세포에서 석류 유래 나노베지클의 항암효과)

  • Dong-ha Kim;Ji-Su Kim;In-Sook Kwun;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Purpose: Cancer is the leading cause of death in Koreans, with breast cancer being the most common among women. Breast cancer readily metastasizes, and the existing treatment processes impose a significant burden on patients. This study examined whether pomegranate-derived exosome-like nanovesicles (PNVs) have anti-cancer effects by inhibiting cell infiltration and metastasis while increasing apoptosis on breast cancer MDA-MB-231 cells. Methods: Initially, exosome-like nanovesicles were isolated from pomegranate using ultracentrifugation. Subsequently, the size range of these nanovesicles was confirmed using nanoparticle tracking analysis. The ability of breast cancer MDA-MB-231 cells to internalize these natural nanovesicles was assessed with flourescence microscope. The anti-cancer effects of the PNVs were confirmed by applying various concentrations of PNVs (10, 50, 100 ㎍/mL) to MDA-MB-231 cells and systematically assessing their impact on cell viability and migration. Results: The round shape of the lipid bilayer in the PNVs was confirmed, providing crucial insights into their structural properties. We demonstrate that PNVs-associated DiD dye can be efficiently internalized by the MDA-MB-231 cells. The data showed that the PNVs inhibited cell viability, invasion rates, and migration in MDA-MB-231 cells. In addition, PNVs were absorbed into the MDA-MB-231 cells, leading to an increased expression of apoptosis proteins, such as cleaved caspase-3 and phosphorus-JNK, in a concentration-dependent manner. Furthermore, a reduction in cell infiltration and decreased expression of the transition markers MMP-2 and MMP-9 proteins were observed. Conclusion: For the first time, this study suggests that PNVs may be useful in the prevention or treatment of breast cancer by inhibiting the infiltration and metastasis of MDA-MB-231 cells and inducing apoptosis.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Extracellular vesicles as emerging intercellular communicasomes

  • Yoon, Yae Jin;Kim, Oh Youn;Gho, Yong Song
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.531-539
    • /
    • 2014
  • All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

Proteomic Analysis on Exosomes Derived from Patients, Sera Infected with Echinococcus granulosus

  • Wang, Wen;Zhou, Xiaojing;Cui, Fang;Shi, Chunli;Wang, Yulan;Men, Yanfei;Zhao, Wei;Zhao, Jiaqing
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.489-497
    • /
    • 2019
  • Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications

  • Shuanglong Zhou;Jialing Huang;Yi Zhang;Hongsong Yu;Xin Wang
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.12.1-12.17
    • /
    • 2024
  • Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.

The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation

  • Ronnau, Cindy;Liebermann, Herbert E. H.;Helbig, Franz;Staudt, Alexander;Felix, Stephan B.;Ewert, Ralf;Landsberger, Martin
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • The bio-complex "reaction pattern in vertebrate cells"(RiV) is mainly represented by characteristic exosome-like particles - probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5${\pm}$10.3%) and VCAM-1 (71.1${\pm}$12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0${\pm}$5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7${\pm}$4.1%) and p65 (85.0${\pm}$1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

Macrophage-secreted Exosomes Delivering miRNA-21 Inhibitor can Regulate BGC-823 Cell Proliferation

  • Wang, Jian-Jun;Wang, Ze-You;Chen, Rui;Xiong, Jing;Yao, Yong-Liang;Wu, Jian-Hong;Li, Guang-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4203-4209
    • /
    • 2015
  • Exosomes, membranous nanovesicles, naturally carry bio-macromolecules or miRNA and play impoetant roles in tumor pathogenesis. Here, we showed that macrophages cell-derived exosomes can function as vehicles to deliver exogenous miR-21 inhibitor into BGC-823 gastric cancer cells. Exosomes loaded with miR-21inhibitor significantly increased miR-21 levels in BGC-823, but miR-21inhibitor loaded in exosomes exerted an opposite effect. miRNA transfected with exosomes had less cellular toxicity to host cells compared to conventional transfection methods. The miR-21inhibitor loaded exosomes promoted the migration ability and reduced apoptosis of BGC-823 gastric cancer cells. These observations indicate that miR-21 acts as a tumor promoter by targeting the PDCD4 gene and preventing apoptosis of gastric cancer cells through inhibition of PDCD4 expression. Furthermore, exosome -mediated miR-21 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. These findings contribute to our understanding of the functions of miR-21 and exosomes as a carrier for therapy of gastric cancer.