• Title/Summary/Keyword: exocrine regions

Search Result 13, Processing Time 0.03 seconds

An immunohistochemical study on the endocrine pancreas of the bean goose, Anser fabalis, Latham (기러기 췌장 내분비세포에 대한 면역조직화학적 연구)

  • Lee, Jae-hyun;Ku, Sae-kwang;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.448-454
    • /
    • 1999
  • The regional distribution and relative frequency of the endocrine cells in the pancreas of the bean goose were investigated by immunohistochemical methods using 6 types of the specific antisera. Spindle shaped serotonin-immunoreactive cells were detected in the exocrine portions. Spherical or spindle shaped glucagon-immunoreactive cells were observed in the exocrine and dark and mammalian type islets. In the dark type islets, numerous cells were dispersed throughout whole islets but they were located in the peripheral regions of the mammalian type islets. No glucagon-immunoreactive cells were detected in light type islets. Round or spherical shaped insulin-immunoreactive cells were observed in the exocrine and dark, light and mammalian type islets. They were observed in the exocrine regions with a few numbers. Extremely rare cells were detected in central portion of the dark type islets but moderate to numerous cells were found in the central regions of the mammalian and light type islets, respectively. Spherical or spindle shaped somatostatin-immunoreactive cells were observed in the exocrine and dark, light and mammalian type islets. A few single cells were detected in the exocrine portions. In the dark type islets, numerous cells were dispersed throughout whole islets but a few to moderate numbers of cells were located in the peripheral regions of the light and mammalian type islets. Moderate numbers of the bovine pancreatic polypeptide-immunoreactive cells were found in the exocrine portions with round, spherical or spindle shape. But no bovine Sp-1/chromogranin-immunoreactive cells were observed in this study.

  • PDF

Immunohistochemistry of the Pancreatic Endocrine Cells of the Red-eared Slider (Trachemys scripta elegans)

  • Ku, Sae-Kwang;Lee, Hyeung-Sik;Lee, Jae-Hyun;Park, Ki-Dae
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 2000
  • Regional distribution and relative frequency of endocrine cells in the pancreas of the red-eared slider, Trachemys scripta elegans, were investigated by immunohistochemical methods. Chromogranin (Cg) A-, serotonin-, insulin-, glucagon-, somatostatin-, bovine pancreatic polypeptide (BPP)- and human pancreatic polypeptede (HPP)-immunoreactive cells were identified in this study. Most of immunoreactive cells in the exocrine and endocrine pancreas (Langerhans islet) were generally spherical or spindle-shaped (open-typed cell), while occasionally cells round in shape (close-typed cell) were found in the basal portion or interepithelial regions of the pancreatic duct. These immunoreactive cells were located in the exocrine, endocrine pancreas and/or basal or interepithelial portion of the pancreatic duct. Serotonin-immunoreactive cells were found in the basal portion of epithelia of the pancreatic duct at a low frequency and interacinar region of the exocrine at a moderate frequency. Insulin-immunoreactive cells were found in the central portion of the endocrine pancreas, interacinar regions of the exocrine pancreas and basal portion of the epithelia of the pancreatic duct at high, moderate and low frequencies, respectively. Glucagon-immunoreactive cells were detected in the periphery of the endocrine pancreas, interacinar region of the exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at high, moderate and moderate frequencies, respectively. Somatostatin-immunoreactive cells were dispersed in the whole area of the endocrine pancreas, interacinar regions of exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at a moderate frequency. BPP- and HPP-immunoreactive cells were detected in the iinteracinar region of the exocrine pancreas at moderate and hige frequencies, respectively. However, no Cg A- and motilin-immunoreactive cells were detected in this study.

  • PDF

The morphological changes of exocrine pancreas by pancreatic duct ligation in chicken (췌관을 결찰한 닭 췌장 외분비부의 형태학적 변화)

  • Ku, Sae-kwang;Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.245-252
    • /
    • 1997
  • To investigate morphological changes in the exocrine pancreas of chicken after pancreatic duct ligation, experimental animals were subdivided to control, 12 hours, 1 day, 2 days, 4 days, 7 days and 10 days groupes and all of three pancreatic ducts of chicken were ligated by surgical procedure and then the morphological changes were observed. In pancreatic ducts, once for a while the ducts were dilated on 12 hours after pancreatic duct ligation and then they were obstructed because of proliferated epithelial cells and connective tissues in pancreatic duct. Marginal dissociation of acini was detected in 12 hours after pancreatic duct ligation and then dissociation of acini was increased with time and finally in 4 days after pancreatic duct ligation the acini showed completely dissociation except periductular regions and around pancreatic islets. Most of dissociated acini cells showed marginal condensation of nuclear chromatin and atropy of cytoplasm, namely, apoptotic features were detected in dissociated acinar cells. Interacinar spaces of dissociated acinar regions were dilated and fulfilled with increased connective tissue and in 4 days after pancreatic duct ligation, deposition of lymphocytes and hemocytes was occurred.

  • PDF

An immunohistochemical study of endocrine cells in the alimentary tract and pancreas of the toad, Bufo bufo gargarizans Cantor (두꺼비(Bufo bufo gargarizans cantor)에서 위장췌내분비세포의 면역조직화학적 연구)

  • Lee, Hyeung-sik;Ku, Sae-kwang;Park, Ki-dae;Lee, Jae-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • The regional distribution and relative frequencies of endocrine cells were studied immunohistochemically (PAP methods) in the alimentary tract and pancreas of the toad, Bufo bufo gargarizans Cantor using specific antisera against bovine Sp-1/chromogranin (BCG), serotonin, bombesin, gastrin, substance P (SP), somatostatin, insulin, glucagon, pancreatic polypeptide (PP), vasoactive intestinal polypeptide (VIP) and secretin. Nine kinds of endocrine cells were identified in this study. Spherical or spindleshaped immunoreactive (IR) cells were located in the gastric glands of stomach regions, in the basal portion of the epithelium of intestinal tract or esophagus, and in the exocrine or pancreatic islets with variable frequencies. In the alimentary tract, BCG-IR cells were found in the fundus and pylorus with rare and a few frequencies, respectively. Serotonin-IR cells were demonstrated in the whole alimentary tract including the esophagus. Bombesin- and SP-IR cells were restricted to the stomach regions and gastrin-IR cells were restricted to the pylorus. Somatostatin-IR cells were detected throughout the whole alimentary tract except for the large intestine, However, insulin-, glucagon-, PP-, VIP- and secretin-IR cells were not detected in the alimentary tract. In the pancreas of toad, the distribution and relative frequency of endocrine cells were similar to those of other mammals. Insulin-IR cells were located in the central portion of the pancreatic islets and interspaces of exocrine portions, and glucagon-, somatostatin- and PP-IR cells were detected in the marginal regions of the pancreatic islets and interspaces of exocrine. However, other IR cells were not found in the pancreas. In conclusion, the regional distribution and relative frequency of the endocrine cells in the alimentary tract and pancreas of the toad were similar to other anuran species but some differences which might be caused by feeding habits and species specification were also observed.

  • PDF

Immunohistochemical Study of the Endocrine Cells in the Pancreas of the Korean Aucha Perch, Serranidae (Coreoperca herzi) (Serranidae (Coreoperca herzi) 췌장 내분비세포에 대한 면역조직화학적 연구)

  • Lee, Jae-hyun;Ku, Sae-kwang;Lee, Hyeung-sik;Ham, Tae-su
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.339-347
    • /
    • 2003
  • The regional distribution and relative frequency of some endocrine cells in the pancreas of the Korean aucha perch, Coreoperca herzi Herzenstein belonging to the family Serranidae in order Perciformis, were observed using specific mammalian antisera against serotonin, insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP) by peroxidase antiperoxidase (PAP) method. The pancreas was divided into four portions (principal and secondary islets, exocrine and pancreatic duct regions). In addition, the pancreatic islet regions were further subdivided into three regions (central, mantle and peripheral regions). Spherical to spindle or occasionally round to oval immunoreactive (IR) cells were demonstrated in the pancreatic islets and exoccrine portions, but no cells were detected in the pancreatic duct portions. In the principal islets, serotonin-IR cells were not detected but most of insulin-IR cells were located in the central regions and they were also demonstrated in the mantle and peripheral regions in moderate and rare frequencies, respectively. Glucagon- and hPP-IR cells were mainly situated in the mantle regions but the cells were also demonstrated in the peripheral regions in relatively lower frequency. Somatostatin-IR cells were evenly distributed in the central and mantle regions in a few frequency and cells were also demonstrated in the peripheral regions in rare frequency. Cell clusters were consisted of hPP-IR cells that were situated in the peripheral to mantle regions. In the secondary islet portions, serotonin-IR cells were randomly distributed throughout the whole pancreatic islet regions but lower frequency was detected in the peripheral regions compared to that in central and mantle regions where cells were detected in a few frequency, respectively. Insulin-IR cells were restricted to the central regions in numerous frequency and glucagon-IR cells were evenly distributed in the mantle and peripheral regions in moderate frequencies, respectively. Somatostatin-IR cells were observed in the central and mantle regions in moderate and a few frequencies, respectively. In addition, hPP-IR cells showed similar distributional patterns to those of glucagon-IR cells except cells were also located in the central regions in rare frequency. In the exocrine portions, only glucagon- and hPP-IR cells were demonstrated in rare and a few frequencies, respectively. In conclusion, the regional distribution and relative frequency of pancreatic endocrine cells of the Korean aucha perch showed general patterns, which were observed in other teleost. However, some species-dependent different distributional patterns and/or relative frequencies were also demonstrated especially to serotonin-IR cells. In pancreas of the Korean aucha perch, insulin-IR cells were the most predominant cell type followed by glucagon-, somatostatin-, hPP- and serotonin-IR cells.

Changes of the Somatostatin-immunoreactive Cells in the Pancreas of the Korean Native Goat (Capra hircus) during Development

  • Sae-Kwang Ku;Ki-dae Park;Hyeung-Sik Lee;Jae-Hyun Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.269-273
    • /
    • 1999
  • The distribution and relative frequency of somatostatin-immunoreactive cells in the pancreas were studied during developmental stages (fetus, neonate, 1-month-old, 6-month-old and adult) of the Korean native goat by immunohistochemical methods. Somatostatin-immunoreactive cells were detected in the exocrine of all ages, in the endocrine portions (pancreatic islets) from the neonate, and in the pancreatic duct of the 1-month-old. The relative frequencies of these cells in the pancreatic islets increased with age. However, there were no age-related changes in the relative frequencies of somatostatin-immunoreactive cells in the exocrine and pancreatic duct. Generally, they were distributed in the interacinar spaces, the epithelium of the pancreatic duct, or dispersed in the peripheral zone of the pancreatic islets in all ages. However, clusters consisting of 3-4 cells were also found in the subepithelial connective tissues from the 1-month-old. In addition, the distributions in the endocrine portions of the adult were divided into two patterns: 1) they are dispersed in the marginal regions with moderate or low frequencies, or 2) in the inner zone with high frequencies.

  • PDF

Multiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland

  • Han, Ji-Hye;Kim, Hye-Mi;Seo, Deog-Gyu;Lee, Gene;Jeung, Eui-Bae;Yu, Frank H.
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Purpose: Salivary fluid formation is primarily driven by Ca2+-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the anoctamin gene family in the mouse submandibular gland was studied. Methods: Total RNA extracted from mouse submandibular salivary glands was reverse transcribed using primer pairs to amplify the full-length coding regions of each anoctamin gene and was subcloned into plasmid vectors for DNA sequencing. Alternative splice variants were also screened by polymerase chain reaction using primer pairs that amplified six overlapping regions of the complementary DNA of each anoctamin gene, spanning multiple exons. Results: Multiple anoctamin transcripts were found in the mouse submandibular salivary gland, including full-length transcripts of anoctamin1, anoctamin3, anoctamin4, anoctamin5, anoctamin6, anoctamin9, and anoctamin10. Exon-skipping splicing in the N-terminal exons of the anoctamins1, anoctamin5, and anoctamin6 genes resulted in multiple alternative splice variants. No expression of anoctamin2, anoctamin7, or anoctamin8 was found. Conclusions: The predominant anoctamin transcript expressed in the mouse submandibular gland is anoctamin1ac. The chloride channel protein produced by anoctamin1ac is likely responsible for the $Ca^{2+}$-activated chloride efflux, which is the rate-limiting step in salivary exocrine secretion.

Immunohistochemical study of the pancreatic endocrine cells in the ICR mice (ICR 마우스 췌장 내분비세포에 대한 면역조직화학적 연구)

  • Ku, Sae-kwang;Lee, Hyeung-sik;Lee, Jae-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • The regional distribution and relative frequency of the pancreatic endocrine cells in the ICR mouse were studied by immunohistochemical (PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). The pancreas of mice could be divided into three portions; pancreatic islets, exocrine and pancreatic ducts. Pancreatic islets, furthermore, were subdivided into three regions (central, mantle and peripheral region) according to their located types of immunoreactive cells. In the pancreatic islet portions, insulin-immunoreactive cells were located in the central and mantle regions but most of somatostatin-, glucagon- and PP-immunoreactive cells were detected in the mantle and peripheral regions with various frequencies. In addition, PP-immunoreactive cells were also found in the central regions of pancreatic islets of ICR mouse. In the exocrine portions, all four types of immunoreactive cells were demonstrated in the ICR mouse. In the pancreatic duct portions, insulin- and glucagon-immunoreactive cells were situated in the epithelial lining of ICR mouse with a few and rare frequencies, respectively. In addition, rare PP-immunoreactive cells were also demonstrated in the subepithelial regions of the pancreatic duct. However, no somatostatin-immunoreactive cells were demonstrated.

An immunohistochemical study of the serotonin-immunoreactive cells in the developing pancreas of the chicken embryos (발생단계에 따른 닭 태자 췌장에서 serotonin 면역반응세포에 대한 면역조직화학적 연구)

  • Ham, The-su
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • The distributions and relative frequencies of the serotonin-immunoreactive cells were studied in dorsal, ventral, third and splenic lobes of developing chicken pancreas during embryonic periods (10 days of incubation to hatching) by immunohistochemical methods. The regions of pancreas were subdivided into three regions, exocrine, light and dark islets. Round and/or oval shaped serotonin-immunoreactive cells were detected in all four lobes. According to developmental stages, the types of lobes and the regions of pancreas, these immunoreactive cells were showed various distributions and relative frequencies. In exocrine portions, serotonin-immunoreactive cells were found in the splenic lobes at 13-14 days of incubation, in the third lobes from 10 days to 19 days of incubation, in the ventral lobes from 10 days of incubation to hatching and in the dorsal lobes from 11 days of incubation to hatching. In pancreatic islets, these cells were detected only in the dark islets of splenic lobes at 15 and 16 day of incubation with rare frequency. In conclusion, serotonin-immunoreactive cells decreased with developmental stages in all four lobes and their relative frequencies decreased with developmental stages.

  • PDF

Immunohistochemical studies of the pancreatic endocrine cells of the various animals (각종 동물의 췌장 내분비세포의 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.497-510
    • /
    • 1992
  • This study was attempted to comparative investigate the types and regional distribution of the endocrine cells in several vertebrates immunohistochemically using seven antisera. From carp pancreas could be observed 4 types which are insulin-, glucagon-, som- and BPP-immunoreactive cells. Insulin-immunoreactive cells were mainly distributed at the periphery and a few cells occupied the central region of the islets. Glucagon-immunoreactive cells were distributed at the periphery of the islets, and som - and BPP-immunoreactive cells were located at the central region. From frog pancreas could be observed 4 types which are insulin-, glucagon-, som- and BPP-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the islets. Som-immunoreactive cells were distributed at the periphery of the islets, and glucagon- and BPP-immunoreactive cells were found as single cell or as small groups located between the pancreatic acini. From snake pancreas could be observed 3 types which are insulin-, glucagon- and som -immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the small islets, and they also were scattered at the periphery of the large islets. Glucagon-immunoreactive cells were distributed at the periphery of the islets, whereas som-immunoreactive cells were occupied the central region. From Ogolgae pancreas could be observed 4 types which are insulin-, glucagon-, som-and BPP-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the small islets, but at the periphery of the large one. Glucagon- immunoreactive cells were distributed at the periphery of the small islets and in the large islets showed scattering entired. Som-immunoreactive cells were distributed at the periphery of the small islets and in the large islets were located at the central region. A small numbers of BPP-immunoreactive cells were located at the periphery of the small islets and the exocrine regions. From the pancreas of the Korean native goat could be observed 6 types which are insulin-, glucagon-, som-, BPP-, 5-HT- and porcine-CG-immunoreactive cells. Insulin-immunoreactive cells were distributed throughout the islets. Som-immunoreactive cells were located at the periphery of the islets, but a tew were scattered at the central region of islets and in the epithelium of the secretory duct. Glucagon-, BPP-, 5-HT- and porcine CG-immunoreactive cells were distributed at the periphery of the islets. These findings indicated that the regional distribution patterns and cell types of pancreatic endocrine cells in vertebrates varies considerably among phylogenetically different vertebrates.

  • PDF