• Title/Summary/Keyword: exit cost

Search Result 80, Processing Time 0.032 seconds

The Precise Extrusion-Technical Development to Get Excellent Mechanical-property and Accurate Shape- Dimension (우수한 기계적 특성과 형상치수 확보를 위한 정밀 압출기술개발)

  • Lee, Hyun-Cheol;Lee, Kwang-Sik;Oh, Kae-Hee;Park, Sang-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.311-320
    • /
    • 2009
  • Most advanced countries are researching to apply light weight materials far rolling stock because weight reduction for railway body derives cost-saving, energy-saving, and high-speed. Likewise, current Korea rolling stock field makes arduous effects of weight-reduction, miniaturization, and high-efficiency to achieve a high-speed railway. Aluminum becomes suitable material for these projects because it is much lighter than steel or stainless. Manufacturing the railway car body by using the Aluminum is increasing because Aluminum is not bringing the corrosion by unique oxidation-passivate. Aluminum extrusion profile far railway body requires a high mechanical property, accurate shape dimension, and stable quality because the railway body is composed with many different kinds of extruded profiles. Therefore, it is necessary to research about Aluminum precision-extrusion technology to maintain exit temperature and die load. The goal of this project is applying the Aluminum extrusion profile to next-generation railway car body by developing the Aluminum extrusion profile according to precision-extrusion technology which may maintain isothermal exit temperature.

  • PDF

Analysis of Open Toll Segments in Urban Freeways (개방식고속도로 통행특성과 영업체계 전환분석)

  • Nam, Du-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.101-109
    • /
    • 2007
  • Two variations of toll roads exist: mainline toll plazas and entry/exit tolls. On a mainline toll system(open toll scheme), all vehicles stop at various locations along the highway to pay a toll. While this may save money from the lack of need to construct tolls at every exit, it can cause lots of traffic congestion, and drivers could evade tolls by going around them. With entry/exit tolls, vehicles collect a ticket when entering the highway, which displays the fares it will pay when it exits, increasing in cost for distance travelled. Upon exit, the driver will pay the amount listed for the given exit. The pressures on the Seoul ring roadway network have been changing over time. In the past, the emphasis was on mobility and maintenance of the road network to provide an efficient transportation network, but recently, road use has outstripped the network's ability to extend and expand the road network and hence the policy emphasis has moved towards reducing free riders rather than mitigating its effects. In addition to this pressure is an incidental pressure, which argues that provision of free ride segments generates further traffic in isolation of other factors. This paper is examining policies to reduce the burden of traffic congestion in Seoul ring roadway which is used open toll scheme for decades. One key mechanism to achieve this policy aim is automatic charging mechanism on freeway, but if a nation-wide electronic toll collection is to be implemented successfully, there are a number of prerequisites which must be place.

Numerical analysis on stability of express railway tunnel portal

  • Zhou, Xiaojun;Hu, Hongyun;Jiang, Bo;Zhou, Yuefeng;Zhu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • On the basis of the geological conditions of high and steep mountainous slope on which an exit portal of an express railway tunnel with a bridge-tunnel combination is to be built, the composite structure of the exit portal with a bridge abutment of the bridge-tunnel combination is presented and the stability of the slope on which the express railway portal is to be built is analyzed using three dimensional (3D) numerical simulation in the paper. Comparison of the practicability for the reinforcement of slope with in-situ bored piles and diaphragm walls are performed so as to enhance the stability of the high and steep slope. The safety factor of the slope due to rockmass excavation both inside the exit portal and beneath the bridge abutment of the bridge-tunnel combination has been also derived using strength reduction technique. The obtained results show that post tunnel portal is a preferred structure to fit high and steep slope, and the surrounding rock around the exit portal of the tunnel on the high and steep mountainous slope remains stable when rockmass is excavated both from the inside of the exit portal and underneath the bridge abutment after the slope is reinforced with both bored piles and diaphragm walls. The stability of the high and steep slope is principally dominated by the shear stress state of the rockmass at the toe of the slope; the procedure of excavating rockmass in the foundation pit of the bridge abutment does not obviously affect the slope stability. In-situ bored piles are more effective in controlling the deformation of the abutment foundation pit in comparison with diaphragm walls and are used as a preferred retaining structure to uphold the stability of slope in respect of the lesser time, easier procedure and lower cost in the construction of the exit portal with bridge-tunnel combination on the high and steep mountainous slope. The results obtained from the numerical analysis in the paper can be used to guide the structural design and construction of express railway tunnel portal with bridge-tunnel combination on high and abrupt mountainous slope under similar situations.

Design of New Rail Support Block for Urban Maglev (도시형 자기부상열차를 위한 새로운 레일지지부의 설계)

  • Jang, Seung-Yup;Choi, Il-Yoon;Yeo, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1318-1323
    • /
    • 2007
  • Proposed herein is a shape design of a different rail support block with existing ones for the commercialization of the urban maglev. The rail support for existing test lines adopts monoblock steel sleeper, whereas an individual support system has been proposed to achieve an additional cost savings and to provide an emergency exit. Also, to enhance the easiness of installation and the repairability, alignment adjusting methods suitable for the new design have been devised.

  • PDF

A Study on Minimum Cabin Crew Requirements for Korean Low Cost Air Carriers

  • Yoo, Kyung-In;Kim, Mun-Kyung
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.291-314
    • /
    • 2018
  • In recent 3 years, Korea's low-cost airlines have expanded their areas of passenger transportation not only to domestic market but also to Japan, China, Southeast Asia and US territory as a total of 6 companies (8 airlines including small air operation business carriers). Currently, three more airlines have filed for air transportation business certification as future low-cost carriers, and this expansion is expected to continue. To cope with the aggressive airline operations of domestic and foreign low-cost carriers and to enhance their competitiveness, each low-cost airline is taking a number of strategies for promoting cabin service. Therefore, the workload of the cabin crew is increased in proportion to the expansion, and the fatigue directly connected with the safety task performance is increased. It is stipulated in the Enforcement Regulations of the Korea Aviation Safety Act that at minimum, one cabin crew is required per 50 passenger seating capacity, and all low cost carriers are boarding only the minimum cabin crew. Sometimes it is impossible for them to sit in a floor level emergency exit for evacuation, which is the main task of the cabin crew, and this can cause confusion among evacuating passengers in the event of an emergency. In addition, if one of the minimum cabin crew becomes incapacitated due to an injury or the like, it will become a serious impediment in performing emergency evacuation duties. Even in the normal situation, since it will be violating the Act prescription on the minimum cabin crew complement, passengers will have to move to another available airline flights, encountering extreme inconvenience. Annex 6 to the Convention on International Civil Aviation specifies international standards for the determination of the minimum number of cabin crew shall be based only on the number of passenger seats or passengers on board for safe and expeditious emergency evacuation. Thereby in order to enhance the safety of the passengers and the crew on board, it is necessary to consider the cabin crew's fatigue that may occur in the various job characteristics (service, safety, security, first aid)and floor level emergency exit seating in calculating the minimum number of cabin crew. And it is also deemed necessary for the government's regulatory body to enhance the cabin safety for passengers and crew when determining the number of minimum cabin crew by reflecting the cabin crew's workload leading to their fatigue and unavailability to be seated in a floor level emergency exit on low cost carriers.

A Study on the Characteristics of Traffic Accidents on Trumpet IC Ramp (트럼펫 IC형식 연결로 교통사고 특성분석에 관한 연구)

  • Yun, Byeong-Jo;O, Yeong-Tae;Lee, Seung-Hwan;Ji, Dong-Han
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.41-51
    • /
    • 2006
  • In this paper, a fundamental study on the characteristics of traffic accidents according to the alignment and traffic conditions on the ramp of freeway is addressed. The macro-and-micro scope analysis of characteristics about traffic accidents on the trumpet-IC ramps is conducted depending on the entering and exit ramp types under the various conditions of traffic volume and alignment And it is turned out that the conditions of alignment. such as radius, differences of curvatures, and main road grade, and traffic volume relate to the ramp accidents of trumpet IC according to ramp types, such as direction, semi-direction, and loop. Macroscopically, AR (Accident Rate) according to trumpet IC types, A and B, is analyzed nearly equal, but Number of accidents occurred in IC type B shows about 1.5 times higher than type A. And AR of exit ramps shows three times more than entrance ramps. Microscopically, ARs for each exit-ramp type, according to the increment of traffic volume, the difference of curvatures. and the first radius, exponentially decrease respectively. But relationships between AR and the second radius or exit ramp shows inverted U-shaped. AR according to main-road grade Peaks between -1.5% and -0.5%. It is expected that the developed models not only are employed to make design of trumpet-IC ramp more cost-efficiently and safely, but also contribute to making alternatives to the reduction of traffic accidents on trumpet IC ramps under the conditions of high traffic accident rate.

A Coaxial and Off-axial Integrated Three-mirror Optical System with High Resolution and Large Field of View

  • Chen, Zhe;Zhu, Junqing;Peng, Jiantao;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • A novel optical design for high resolution, large field of view (FOV) and multispectral remote sensing is presented. An f/7.3 Korsch and two f/17.9 Cook three-mirror optical systems are integrated by sharing the primary and secondary mirrors, bias of the FOV, decentering of the apertures and reasonable structure arrangement. The aperture stop of the Korsch system is located on the primary mirror, while those of the Cook systems are on the exit pupils. High resolution image with spectral coverage from visible to near-infrared (NIR) can be acquired through the Korsch system with a focal length of 14 m, while wide-field imaging is accomplished by the two Cook systems whose focal lengths are both 13.24 m. The full FOV is 4°×0.13°, a coverage width of 34.9 km at the altitude of 500 km can then be acquired by push-broom imaging. To facilitate controlling the stray light, the intermediate images and the real exit pupils are spatially available. After optimization, a near diffraction-limited performance and a compact optical package are achieved. The sharing of the on-axis primary and secondary mirrors reduces the cost of fabrication, test, and manufacture effectively. Besides, the two tertiary mirrors of the Cook systems possess the same parameters, further cutting down the cost.

UV Dose Predictions for Ultra Violet Flowing Water Purification of Axial Reactor Type based on the location of the exit by CFD (CFD에 의한 Axial Reactor Type 자외선 유수살균장치의 출구 위치에 따른 UV Dose 예측)

  • Choi, Jong-Woong;Kim, Seong-Su;Park, No-Suk;Lee, Young-Joo;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.521-533
    • /
    • 2012
  • Interest in application of ultraviolet light technology for primary disinfection that used for the treatment of water for consumption and wastewater has increased significantly in recent years. Analysis of these systems has been carried out using Computational Fluid Dynamics (CFD) procedure. It offers advantages over other techniques in specific circumstances. CFD has emerged as a powerful tool to aid design of a UV reactor by providing the UV dose delivered by the proposed reactor design and allowing engineers to evaluate alternative designs in much less time and at a reasonable cost. In this study, five different configurations of the apparatus depending on the location of the exit are evaluated in terms of maximum dose, minimum dose, flow patterns, particle tracks and transient dose. The configuration 3 results have higher minimum UV dose value and uniform particle distribution of the UV dose on the outlet than other's.

Why Do Startups Fail? A Case Study Based Empirical Analysis in Bangalore

  • Kalyanasundaram, Ganesaraman
    • Asian Journal of Innovation and Policy
    • /
    • v.7 no.1
    • /
    • pp.79-102
    • /
    • 2018
  • In an entrepreneurial ecosystem, the failure rate of startups is extremely high at 90%, and every startup that fails becomes an orphan. This phenomenon leads to higher costs of failure for the entrepreneurs in the ecosystem. Failed startups have many lessons to offer to the ecosystem and offer guidance to the potential entrepreneur, and this area is not fully explored compared to the literature on successful startups. We use a case based method distinguishing a failed startup and a successful startup, studying the entrepreneurial characteristics and firm level factors which cause the failures, in the technology startup ecosystem of Bangalore. We study one of the modes of exit adopted by failed startup entrepreneurs and draw key lessons on causes that culminate in failures. We have identified that factors such as the time to minimum viable product cycle, time for revenue realization, founders' complementary skillsets, age of founders with their domain expertise, personality type of founders, attitude towards financial independence and willingness to avail mentorship at critical stages, will decisively differentiate failed startups from the successful ones. Accordingly, implications have been derived for potential entrepreneurs for reducing the cost of failures in the entrepreneurial ecosystem.

The Cost-Benefit Analysis of Korean Self-Support program (한국 자활사업의 비용-편익분석 연구)

  • Lee, Sang-Eun;Kwon, Hyeok Chang;Jeon, Sena
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.3
    • /
    • pp.299-326
    • /
    • 2010
  • This study examines the costs and benefits of Korean Self-Support Program of the National Basic Livelihood Security Act. A cost-benefit analysis is used to evaluate the efficiency of the Self-Support program. According to the analysis, the program has net value for society as a whole as well as for the average participant although the result is sensitive to the assumption of forgone earnings. The results of an alternative perspective also show that the increased exit rates (and employment rates) of participants will increase the benefits of the program substantially.