• 제목/요약/키워드: existing reinforced concrete buildings

검색결과 176건 처리시간 0.023초

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Natural time period equations for moment resisting reinforced concrete structures comprising hollow sections

  • Prajapati, Satya Sundar;Far, Harry;Aghayarzadeh, Mehdi
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.317-325
    • /
    • 2020
  • A precise estimation of the natural time period of buildings improves design quality, causes a significant reduction of the buildings' weight, and eventually leads to a cost-effective design. In this study, in order to optimise the reinforced concrete frames design, some symmetrical and unsymmetrical buildings composed of solid and hollow members have been simulated using finite element software SAP 2000. In numerical models, different parameters such as overturning moment, story drift, deflection, base reactions, and stiffness of the buildings were investigated and the results have been compared with strength and serviceability limit criteria proposed by Australian Standard (AS 3600 2018). Comparing the results of the numerical modelling with existing standards and performing a cost analysis proved the merits of hollow box sections compared to solid sections. Finally, based on numerical simulation results, two equations for natural time period of moment resisting reinforced concrete buildings have been presented. Both derived equations reflected higher degree of correlation and reliability with different complexities of building when compared with existing standards and relationships provided by other scholars. Therefore, these equations will assist practicing engineers to predict elastic behaivour of structures more precisely.

현장타설 끼움 전단벽 및 철골가새를 활용한 기존 학교 건물의 내진보강 (Seismic Retrofit of an Existing School Building using CIP-Infilled Shear Walls and Steel Braces)

  • 윤길호;김성호;김용철;윤현도
    • 교육시설 논문지
    • /
    • 제19권4호
    • /
    • pp.21-28
    • /
    • 2012
  • This study proposes a procedure for evaluating the seismic performance and retrofit of a typical reinforced building (R/C) school buildings contructed in the 1980s. The procedure is derived from the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings and Nonlinear Static Procedure (NSP) specified in Federal Emergency Management Agency (FEMA 356). In this study, the Japanese Standard was applied for evaluating the additionally required seismic performance in the existing school building. Cast-in-place (CIP) reinforced concrete infill walls and steel braces were used to seismically retrofit the existing school building located in the region of Hongsung in Chungnam. In the pushover analysis, i.e NSP, the hinge properties of columns, beams, infill walls and steel braces were carefully calibrated based on the existing experiment results in the available literatures. The predicted seismic performance for the retrofitted building was compared to that for the virgin building. Based on the seismic evaluation with the Japanese Standard and the FEMA 356 criteria, the addition of CIP reinforced concrete infill walls and steel braces have superior constructablility and can improve effectively the seismic performance of the existing school buildings constructed in 1980s.

기존 철근콘크리트 건물 내진진단법의 강도지표 (Strength Index in Seismic Performance Evaluation Method of Existing Reinforced Concrete Buildings)

  • 이원호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.278-287
    • /
    • 2000
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. However, due to more than four hundred earthquakes with slight/medium intensity occurred in the off-coastal and inland of Korea during the past 20 years, and due to the great earthquakes occurred recently in neighboring countries, such as the 1995 Hyogoken-Nambu Earthquake with more than 6,500 fatalities in Japan and the 1999 Ji-Ji Earthquake with more than 2,500 fatalities in Taiwan, the importance of the future earthquake preparedness measures in Korea is highly recognized. The main objective of this paper is to provide the basic data for development of a methodology for the future earthquake preparedness in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all over the world. In this paper, a seismic performance evaluation method of the existing reinforced concrete buildings is proposed based on experimental data of columns and walls carried out in Korea by referring the Japanese Standard, especially focusing on the Strength Index(C) among the indices in the seismic capacity index(IS) equations. Also, the seismic capacities of two existing reinforced concrete buildings in Korea are evaluated based on the proposed methodology and the Japanese Standard, and the correlations between the seismic capacities by the proposed methodology and the Japanese Standard are discussed.

  • PDF

Ambient and forced vibration testing with numerical identification for RC buildings

  • Aras, Fuat
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.809-822
    • /
    • 2016
  • Reinforced concrete buildings constitute the majority of the building stock of Turkey and much of them, do not comply the earthquake codes. Recently there is a great tendency for strengthening to heal their earthquake performance. The performance evaluations are usually executed by the numerical investigations performed in computer packages. However, the numerical models are often far from representing the real behaviour of the existing buildings. In this condition, experimental modal analysis fills a gap to correct the numerical models to be used in further analysis. On the other hand, there have been a few dynamic tests performed on the existing reinforced concrete buildings. Especially forced vibration survey is not preferred due to the inherent difficulties, high cost and probable risk of damage. This study applies both ambient and forced vibration surveys to investigate the dynamic properties of a six-story residential building in Istanbul. Mode shapes, modal frequencies and damping ration were determined. Later on numerical analysis with finite element method was performed. Based on the first three modes of the building, a model updating strategy was employed. The study enabled to compare the results of ambient and forced vibration surveys and check the accuracy of the numerical models used for the performance evaluation of the reinforced concrete buildings.

비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가 (Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories)

  • 김민지;한상환;김태오
    • 한국지진공학회논문집
    • /
    • 제25권4호
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

Consistency of the rapid assessment method for reinforced concrete buildings

  • Isik, Ercan
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.873-885
    • /
    • 2016
  • Determination of earthquake-safety of existing buildings requires a rather long and challenging process both in terms of time and expertise. In order to prevent such a tedious process, rather rapid methods for evaluating buildings were developed. The purpose of these rapid methods is to determine the buildings that have priority in terms of risk and accordingly to minimize the number of buildings to be inspected. In these rapid evaluation methods detailed information and inspection are not required. Among these methods the Canadian Seismic scanning method and the first stage evaluation method included in the principles concerning the determination of risk-bearing buildings promulgated by the Ministry of Environment and Urbanization in Turkey are used in the present study. Within the scope of this study, six reinforced concrete buildings damaged in Van earthquakes in Turkey are selected. The performance scores of these buildings are calculated separately with the mentioned two methods, and then compared. The purpose of the study is to provide information on these two methods and to set forth the relation they have between them in order to manifest the international validity.

Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.467-485
    • /
    • 2015
  • This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.

챗봇 활용 철근콘크리트 건축물 구조안전 자가점검 시나리오 개발에 관한 연구 (Development of Chatbot Self-Inspection Scenario for Structural Safety of Existing Reinforced Concrete Buildings)

  • 양재광;강태욱;신지욱
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.331-337
    • /
    • 2023
  • Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.