• Title/Summary/Keyword: exhaust volume

Search Result 209, Processing Time 0.025 seconds

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

Analysis of all PCB Congeners in Air Samples by HRGC/HRMS (대기 시료 중 PCBs 전 이성체 분석에 관한 연구)

  • Kim, Kyoung-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.309-319
    • /
    • 2003
  • This study was performed to describe analysis method of 209 PCB congeners in ambient air samples. The samples were collected by high volume air sampler in Chonju city. Extracted samples were cleaned by silicagel cleanup modified with sulfuric acid and activated carbon cleanup processing. The cleaned samples were analyzed by high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) with DB-5 column (60 m, 0.25 mm i.d., 0.25 m film thickness) to analyze the 209 kinds of PCB congeners. PCBs levels of air samples were detected to the range between 0.003 and $0.163pg-TEQ/m^3$. The PCBs congener of 162 kinds were detected in samples analysed using DB-5 column and 37 kinds peaks were overlapped with congeners more than one. It is difficult to isolate PCB 118/106 and PCB 105/127 in coplanar PCB, so it is likely to overestimate the concentration.. The distribution of coplanar-PCB congeners in origin source samples (Kanechlor and exhaust gas from incinerator) was compared with that in air samples, and PCB 81, PCB 77, PCB 126, and PCB 169 were higher in incinerator samples.

Effects if Benzo(a)pyrene on Natural Killer Cell Activity of Mice (Benzo(a)pyrene이 마우스 자연살해세포 활설에 미치는 영향)

  • Oh, Dong-Il;Kim, Kwang-Hyuk;Lee, Chung-Han;Chung, Hyun-Kee;Park, Jae-Sun
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.257-262
    • /
    • 1998
  • Benzo(a)pyrene(B(a)P), an extensively studied polycyclic aromatic hydrocarbon(PAH), is a common contaminant produced through the burning of fossil fuels, particularly coal, and from the exhaust products of internal combustion engines. It produces a wide range of toxicities, including carcinogenicity in experimental animals. B(a)P has been shown to suppress systemic immunity in experimental animals, which may contribute to the growth of the chemical-induced tumors. Using colorimetric MTT assay natural killer(NK) cell-mediated growth inhibition of tomor cell was measured in normal and B(a)P-exposed C57BL/6 mice. Non-adherent splenocytes of normal or B(a)P-exposed mice were cultured with Yac-1 cells at four different effector/target(E/T) cell ratios ranging from 200/1, 100/1, 50/1, and 25/1 in an assay volume of 0.1 ml. After the optical density of culture wells containing MTT solution was measured at a wavelength of 540 nm, the percentage of dead cells relative to the control target cell number was calculated. The NK activity of B(a)P-exposed mice was markedly lower than that of non-exposed mice group at all E/T ratios. These results indicated that suppression of NK cell activity may play a role in allowing for the growth of tumors.

  • PDF

Experimental Study on the Performance Characteristics of Air Hybrid Engine (Air hybrid 엔진의 구동 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Kim, Yong-Rae;Kim, Young-Min;Park, Chul-Woong;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • A preliminary experimental study of new concept air hybrid engine, which stores compressed air in the tank during braking and re-use it to propel vehicle during crusing or acceleration, was carried out in this study. A single cylinder engine was modified to realize the concept of air hybrid engine. Independent variable valve lift system was adopted in one of the exhaust valves to store the compressed air into the air tank during compression period. An air injector module was installed in the place of spark plug, and the stored compressed air was supplied during the expansion period to realize air motoring mode. For air compression mode, the tank with volume of 30 liter could be charged up to more than 13 bar. By utilizing this stored compressed air, motoring work of 0.41 bar of IMEP(Indicated mean effective pressure) at maximum can be generated at the 800rpm conditions, which is higher than the case of normal idle condition by 1.1 bar of IMEP.

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Occupational Factors Influencing the Forklift Operators' Exposure to Black Carbon (지게차 운전원의 블랙카본(black carbon, BC) 노출에 영향을 미치는 직업적 요인)

  • Lee, Hyemin;Lee, Seunghee;Ryu, Seung-Hun;Park, Jihoon;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.313-323
    • /
    • 2017
  • Objectives: This study aimed to assess exposure to black carbon(BC) among forklift operators and to identify environmental and occupational factors influencing their BC exposure. Methods: We studied a total of 23 forklift operators from six workplaces manufacturing paper boxes. A daily BC exposure assessment was conducted during working hours from January to April 2017. A micro-aethalometer was used to monitor daily BC exposure, and information on work activities was also obtained through a time-activity diary(TAD) and interviews. BC exposure records were classified into four categories influencing BC exposure level: working environment, workplace, forklift operation, and job characteristics. Analysis of variance(ANOVA) was used to compare average BC exposure levels among the four categories and the relationships between potential factors and BC exposure were analyzed using a multiple linear regression model. Results: The operators' daily exposure was $12.9{\mu}g/m^3$(N=9,148, $GM=7.5{\mu}g/m^3$) with a range: $0.001-811.4{\mu}g/m^3$. The operators were exposed to significantly higher levels when they operate a forklift in a room ${\leq}20,000m^3$($AM=12.3{\mu}g/m^3$), in indoor workplaces($AM=16.3{\mu}g/m^3$), when they operate a forklift manufactured before 2006 ($AM=13.2{\mu}g/m^3$), a forklift with a loading limit of four-tons($AM=27.1{\mu}g/m^3$), with a roll and bale type clamp($AM=17.1{\mu}g/m^3$), and with no particulate filter($AM=15.7{\mu}g/m^3$). Conclusions: Occupational factors including temperature, smoking, season, daytime, room volume($m^3$), location of operating, and manufacturing era and model of forklift influenced the BC exposure of forklift operators. The results of this study can be used to minimize the BC exposure of forklift operators.

Evaluation of Decomposition Characteristics of Organochlorine Pesticides Using Thermal Method (열적방법을 활용한 유기염소계 폐농약의 분해 특성 평가)

  • Kwon, Eun-Hye;Yoon, Young-Sam;Bea, Ji-Su;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.744-753
    • /
    • 2018
  • The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was $850^{\circ}C$ and $1100^{\circ}C$. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than $1,100^{\circ}C$.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.