• Title/Summary/Keyword: exhaust tube

Search Result 154, Processing Time 0.024 seconds

Parametric Study on the Capacity of Vacuum Pump for Tube Structure (튜브열차 구조물의 진공 펌프 용량에 관한 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.516-520
    • /
    • 2010
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube structure under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the super high speed, the inside of tube system should be maintained at low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make low pressure state for tube structure, exhaust the leakage air and supplement additional vacuum pumping. As results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be applied to analyze the effects of the reduction of air resistance.

Effects of Swirl Intensity and Particle Size on Dual Swirl Pulverized Coal Flames (미분탄 이중 스월화염에서 스월강도 및 석탄 입경 변화 영향 연구)

  • Choi, Minsung;Sung, Yonmo;Lee, Sangmin;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.1-4
    • /
    • 2014
  • The present work focuses on the analysis of the pulverized coal combustion aerodynamics of the dual swirl burner by the control of the swirl-modes such as the outer swirl intensity (OSI). The detailed structure of pulverized coal swirling flames with swirl-mode was studied experimentally by particle image velocimetry and local flame colors based on $OH^*$, $CH^*$, and ${C_2}^*$ radicals. For all co-swirling conditions, the internal recirculation zone (IRZ) was observed near the inner shear layer with respect to the processing vortex core structure. Furthermore, a co-rotating vortex in the outer shear layer and the exhaust tube vortex (ETV) along the central axis were observed. The intensity of $CH^*$ signal was higher with small coal particle size, conversely, the size of the distribution of the $CH^*$ signal becomes larger. Therefore, the control of the aerodynamics with changing swirl intensities may play an important role in improving both environmental and combustion performances.

  • PDF

A Study on the Enhancement of Cooling Efficiency for the Cabinet of Automatic Controller in the Interior of Industrial Building (산업용 건축물 내 자동제어반의 냉각효율 향상에 관한 연구)

  • Kim, Soon-Ho;Park, Hyun-Jung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.79-87
    • /
    • 2013
  • The improvement of cooling efficiency for the cabinet of automatic controller is the most efficient method of it's application. Therefore, this study has been analyzed and investigated the improvement of cooling efficiency and reduction of energy for the cabinet of automatic controller, respectively. So this study was conducted to enhancement of cooling efficiency for the cabinet of automatic controller by making a structure which produces difference of air pressures in the entrance tube of external air. And the structure has capacity of the pyrogen source (PTC elements) to make temperature range from $145^{\circ}C$ to $155^{\circ}C$. Consequently, temperatures of the upper, the lower in the interior of the cabinet of automatic controller and the exhaust part were revealed $28.57^{\circ}C$, $23.38^{\circ}C$and $36.14^{\circ}C$(average temperature of the exhaust part in case of existing method : $45^{\circ}C$) in target test of this study, respectively. It was found that the cabinet of the automatic controller has better cooling ability than the cabinet of automatic controller by using an existing method.

A Study on the Concentration of CO(Carbon Monoxide) by the Length of the Straight Exhaust Tube for Gas Boiler (가스보일러 직관 배기통의 길이에 따른 폐가스(CO)농도 고찰)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark;Kim, Cheol-Jin;Park, In-Soo;Ha, Tae-Young;Kim, Il-Woo;Choi, Rack-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.5-9
    • /
    • 2007
  • There have been 3E problems of energy, economy and environment since the earth has its history. Especially, the energy and environment problems have been getting serious after the modem industry revolution. Therefore, the demand of gas as an eco-friendly energy source is getting increased. With the demand of gas, the installation and use of gas boiler is also increased, so human life injury by the waste gas(CO) of boiler goes on increasing every you. Hence, we want to find out the harm to human body through the study on the concentration of CO by the length of the straight exhaust tube of gas boiler. The allowable concentration of CO is 50 ppm. The 3 m of once bended tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4 m and 5 m starts exceeding after 3 minutes.

  • PDF

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

HEAT TRANSFER ON THE COMBUSTION CHAMBER OF A WATER TUBE TYPE BOILER WITH MULTIPLE BURNERS (다중 버너를 채택한 수관식 산업용 보일러 연소실의 열전달 특성)

  • Ahn, J.;Hwang, S.;Kim, J.J.;Kang, S.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.335-340
    • /
    • 2009
  • Operating medium or large scale industrial boilers in partial load condition, the burner should undergo the off-design points resulting in poor exhaust gas characteristics. To obtain the stable turn down performance, two or more burners can be used for the industrial boiler. In case multiple burners are adopted, the heat transfer can be enhanced by arranging the burners properly. In the present study, numerical simulations have been conducted for the combustion chamber of a 2 t/h class industrial boiler in order to clarify the heat transfer characteristics at the combustion chamber.

  • PDF

A Computer Simulation of the Combustion and Flueway of a Pulse Combustion Water Heater (맥동연소온수기의 연소실과 노도의 컴퓨터 시뮬레이션)

  • Kang, Kun;Shin, Sei-Kun;Kim, Min-Sik
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.64-72
    • /
    • 1989
  • In this study, the computer simulation for the heat transfer in pulse combustion water heater is performed. The attention is focused to the effects of the installation of corebuster in the flue tube on heat transfer. The energy equations are established for both wall and gas side in the combustion chamber, flue way, exhaust chamber and muffler, and the numerical calculation is executed. Zone method takes longer computer calculation time compared with semi-zone method. Semi-zone method is chosen for numerical calculation. As a result of this study, it is found that the installation of the core buster in flue tube increases total heat transfer. It is also found that the total heat transfer is increased with the increasing of the ratio of the cross section area of corebuster to that of the flue tube. However, the heat transfer effect is negligible for the area ratio above 0.5.

  • PDF

HEAT TRANSFER ON THE COMBUSTION CHAMBER OF A WATER TUBE TYPE BOILER WITH MULTIPLE BURNERS (다중 버너를 채택한 수관식 산업용 보일러 연소실의 열전달 특성)

  • Ahn, J.;Hwang, S.;Kim, J.J.;Kang, S.B.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Operating medium or large scale industrial boilers in partial load condition, the burner should undergo the off-design points resulting in poor exhaust gas characteristics. To obtain the stable turn down performance, two or more burners can be used for the industrial boiler. In case multiple burners are adopted, the heat transfer can be enhanced by arranging the burners properly. In the present study, numerical simulations have been conducted for the combustion chamber of a 2 t/h class industrial boiler in order to clarify the heat transfer characteristics at the combustion chamber.

A Study on the Concentration of CO(Carbon Monoxide) by the Length of the Curved Exhaust Tube for Household Gas Boiler (가정용 가스보일러 곡관 배기통의 길이 변화에 따른 CO농도 고찰)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Ma, Sung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1220-1226
    • /
    • 2007
  • As the industry of 21C has been developed, the gas industry has grown and it has not only the convenience but also the riskiness fer using. Especially, the energy and environment problems have been getting serious after the modern industry revolution. Therefore, the demand of gas as an eco-friendly energy source is getting increased. With the demand of gas, the installation and use of gas boiler is also increased, so human life injury by the waste gas(CO) of boiler goes on increasing every year. Therefore, we want to find out the harm to human body through the study on the concentration of CO by the length of the curved exhaust tube of boiler. The allowable concentration of CO is 50ppm. The length of the one-meter-three-curved tube after three minutes is applicable to 50ppm of the threshold limit values of CO. Also, five meters exceed the threshold limit values of CO after five minutes. Strangely, the concentration of CO is under the threshold limit values from two to four meters.

  • PDF

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.