• Title/Summary/Keyword: exhaust tube

Search Result 154, Processing Time 0.035 seconds

A study on the performance of the perforated tube exhaust muffler (다공형 배기 소음기의 성능에 관한 연구)

  • 권영필;이동훈;방정환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.48-59
    • /
    • 1992
  • This study is on the performance of the perforated tube muffler when it operates as an exhaust silencer with through-flow, steady or pulsating. Theoretical estimation of the insertion loss was made by means of transfer matrix and by using the impedance equation for the perforated tube obtained for the case of low-speed steady through-flow. Experiment was performed for the measurement of the insertion loss at two flow conditions. The one is a steady flow from the exhaust pipe of an idling diesel engine. The effect of the through-flow velocity and steadiness on the muffler performance was obtained. By comparing the theoretical prediction with the experimental result, the validity of the impedance equation in the theoretical model was discussed. It has been found that steadiness as well as magnitude of the through-flow has a significant effect on the performance of the perforated tube muffler. Especially, the self-noise due to the pulsating flow in the engine exhaust system must be taken into account for the prediction of the muffler performance.

  • PDF

EXPERIMENTAL AND COMPUTATIONAL PREDICTION OF CONCENTRATION OF CARBON MONOXIDE GAS RELEASED FROM EXHAUST TUBE OF GAS BOILER (가스보일러 배기통 이탈에 의한 CO가스 누출확산 실험 및 수치해석)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Yoon, Joon-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.172-175
    • /
    • 2008
  • In the last five years, 45 people died and 104 were wounded because of carbon monoxide poisoning accident. CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread of CO gas released from leakage hole of exhaust tube was analyzed by computational flow modeling and concentration measuring test. CO gas leaked form exhaust tube in a building was highest concentrated near the ceiling and formed the circular currents along the walls. Through these experiments and simulation, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

An Experimental Study on Characteristics of Temperature Separation in a Vortex Tube for Diesel Engine Exhaust Gas (Vortex Tube의 승용 디젤기관 배기가스 온도 분리특성에 관한 연구)

  • Jung, Young-Chul;Choi, Doo-Seuk;Im, Seok-Yeon;Kim, Hong-Ju;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • An object of this study is to confirm the opening amount of the throttle valve that is begun the temperature separation of vortex tube for various engine speed and load condition in a common rail diesel engine. The vortex tube located at downstream of the exhaust manifold is a device separating the incoming exhaust gas to hot and cold stream. To find optimum separation efficiency of vortex tube, the opening amount of throttle valve has been investigated for various engine speed and load conditions. Engine speed was found that the influence of engine speed was dominant compared with that of engine load. As engine speed was increased, the throttle opening amount starting temperature separation was reduced.

An Experimental Study on the Energy Separation in a Low Pressure Vortex Tube for Engine (기관적용 저압용 vortex tube의 에너지 분리특성에 관한 실험적 연구)

  • 오동진;임석연;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.235-241
    • /
    • 2002
  • The process of energy separation in a low pressure vortex tube with air as a working medium is studied In detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in the vortex tube provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. In this study Outer tube is used for the application of Diesel engine exhaust. The hot gas flow is fumed 180° and passes the outside of the vortex tube a second time heating it. From this geometric setup of a vortex tube the effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Basic Study on the IoT Micro Boiler (IoT 마이크로 보일러에 대한 기초 연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • The product to be developed in this study is a heat recovery device which generates steam or hot water at high temperature and high pressure by heating water using exhaust gas from diesel engine, gas engine, gas turbine, etc. as an exhaust gas boiler off heat boiler(EGB) type for ship and power generation. The steam vapor or the created warm water is used as the power source required for the steerage heating and hot water facility or the HFO heating of the ship, and the turbine drive. The principle of waste heat boilers serves to heat water as high temperature exhaust gas with heat pass through the tube of the boiler. The heated water is a structure that is sent to a cabin or turbine device in the form of steam. In this study, the objective of this study is to maximize the efficiency by increasing the heat transfer surface by replacing the tube which is the heat transfer part of EGB with the plate tube.

Optimal Design of an Exhaust System of a Vacuum-Compatible Air Bearing (진공용 공기베어링 배기시스템의 최적설계)

  • Khim, Gyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.86-95
    • /
    • 2007
  • This paper presents the optimal design of an exhaust system of a vacuum-compatible air bearing using a genetic algorithm. To use the air bearings in vacuum conditions, the differential exhaust method is adopted to minimize the air leakage, which prevents air from leaking into a vacuum chamber by recovering air through several successive seal stages in advance. Therefore, the design of the differential exhaust system is very important because several design parameters such as the number of seals, diameter and length of an exhaust tube, pumping speed and ultimate pressure of a vacuum pump, seal length and gap(bearing clearance) influence on the air leakage, that is, chamber's degree of vacuum. In this paper, we used a genetic algorithm to optimize the design parameters of the exhaust system of a vacuum-compatible air bearing under the several constraint conditions. The results indicate that chamber's degree of vacuum after optimization improved dramatically compared to the initial design, and that the distribution of the spatial design parameters, such as exhaust tube diameter and seal length, was well achieved, and that technical limit of the pumping speed was well determined.

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance (배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.639-647
    • /
    • 2014
  • Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

Heat Transfer Analysis of EGR Cooler with Different Tube Shape (튜브형상에 따른 배기가스 재순환 냉각 장치 열전달 성능 평가)

  • Sohn, Chang-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.112-117
    • /
    • 2007
  • With the Euro-4 regulation coming into effect, the domestic car industry is forced to look for newer options to reduce NOX in the exhaust. EGR(Exhaust Gas Recirculation) Cooler is an effective method for the reduction of NOX form a diesel engine. High efficiency, low pressure loss and compactness are desirable features of an EGR Cooler. The cooling performance of EGR depends on the shape of tubes and the location of the entrance and exit. This paper reports the computational work conducted to estimate the performance of EGR cooler with three different cross section tubes and a triangular spiral tube. Three dimensional computation results show that the triangular tube is more effective than circular and rectangular tube. The most effective geometry is a triangular spiral tube with offset inlet and outlet locations.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube (다공관형 초음속 배기노즐의 공력소음에 관한 연구)

  • 이동훈
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF