• 제목/요약/키워드: exhaust system

검색결과 1,695건 처리시간 0.027초

배기 소음기내를 전파하는 비정상 충격파의 수치해석 (Study of the Weak Shock Wave Propagating through an Exhaust Pipe Silencer System)

  • 권용훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.462-467
    • /
    • 2001
  • The present study addresses a computational work of the weak shock wave propagatings inside a silencer system of automobile exhaust pipe. Four different types of the silencer systems and the initial shock wave Mach number $M_s$ of $1.01\sim1.30$ are applied to investigate their effects on the noise reduction and the flow field in a silencer system. The results obtained from the present computational work are compared with the experimental results. The second order total variation diminishing (TVD) scheme is employed to solve the two dimensional, compressible, unsteady, Euler equations. The present computational results predict the experimental results with a quite good accuracy. Of the four silencer systems applied, the most desirable silencer system to reduce the peak pressure at the exit of the exhaust pipe is discussed.

  • PDF

디젤기관의 내장형 EGR시스템 적용 가능성에 관한 연구 (A Study on the Application of the Built-in EGR System for Diesel Engine)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.398-404
    • /
    • 1999
  • The EGR is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate the intake and exhaust system become complicated. That is a reason why we consider using the built0in EGR system. The built-in EGR is a system which reduces Nox by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results the possibility of suing the built-in EGR system was confirmed.

  • PDF

레인지후드 역류 저감 시스템 개발 (Range Hood Backflow Reduction Device Development)

  • 이원섭
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.906-911
    • /
    • 2018
  • This study was conducted to develop an efficient high performance range hood and exhaust system for quickly discharging flue gas, smoke, and odor generated when food is cooked in the kitchen, and the following results were obtained. Reverse current rate of 1.53 m/s of the range exhaust system was improved to achieve the inlet speed of 0.3 m/s or less. An efficient range system was constructed by improving the hood exhaust flow by 5.6 m/s at the existing 4.5 m/s.

디클로로메탄 사용 세척공정의 국소배기장치 설치 후 노출농도 변화 (Change in Exposure Concentration in the Cleaning Process after Installing a Local Exhaust System)

  • 조명화;김승기;김현수
    • 한국산업보건학회지
    • /
    • 제33권3호
    • /
    • pp.280-283
    • /
    • 2023
  • Objectives: The purpose of this study was to examine the change in exposure concentration in the cleaning process after installing a local exhaust system. Methods: Dichloromethane measurement was conducted according to the KOSHA Guide (A-19-2019). Results: After the local exhaust device was installed, a total of three measurements were conducted, including temporary work environment measurements, and all of the measurements did not exceed the DCM exposure standard, but were more than 50% of the DCM Time Weighted Average((8-TWA) Conclusions: It is thought that the local ventilation system of a small business needs not only support for the initial installation cost, but also educational support for maintaining the performance of the local ventilation system and support for consumables (adsorbents, filters, etc.) that incur periodic costs.

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.

프로판 엔진의 배기 포트에서 탄화수소 산화율 추정 (Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port)

  • 이형승;박종범;민경덕;김응서
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

T-method를 이용한 고층 아파트 욕실 배기 시스템의 층별 유량분배 해석 (Analysis of Air Flow Rate Distribution for the Bathroom Exhaust System in High-rise Buildings Using T-method)

  • 문종선;강석윤;이승철;유호선;이재헌
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.265-272
    • /
    • 2004
  • Based on the T-method, a new scheme for predicting air flow rate distribution in a bathroom exhaust system is developed. Introduction of individual duct route enables us to disintegrate a complicated multi-fan ductwork into a set of simultaneous single-fan subsystems. The scheme is validated via the analysis of a well-posed test problem, showing physical consistency. In order to demonstrate the utility and capability of our method, the bathroom ventilation system in a 20-story residential building is selected as an example. Under the typical design condition, the air flow rate of each exhaust fan at the balancing point is successfully predicted, and such information can lead to an engineering estimation for the overall system performance. While some deficiencies in ventilation are found at bathrooms at lower floors with 6mmAq-rated exhaust fans, they disappear over the whole building by using fans of enhanced static pressures, 7 and 8mmAq. Finally the present scheme seems to be useful for practical design of multi-branched, multi-fan ventilation systems.

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구 (Improvement of Soot Probe Efficiency for Automotive Emission Measurement)

  • 채일석;김상유;김재열
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.

액체로켓 추진기관의 후류처리장치 고찰 (Investigation of Exhaust Facility of Liquid Rocket Propulsion System)

  • 조남경;이광진;한영민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.133-138
    • /
    • 2012
  • 후류처리 장치는 기본적으로 화염유도로의 역할을 하며 추가적인 기능에 따라 소음/배기가스 처리 장치, 고공 모사 장치 등으로 분류될 수 있다. 본 연구에서는 화염 및 충격파로 부터의 발사체 보호, 제트펌프, 유해배기 가스 저감 등 후류처리 장치에 적용되는 원리를 제시하였다. 물 분사에 의한 소음감소는 마하파를 약화시키며 물의 증발 및 응축을 통해 제트의 에너지를 줄이는 원리를 이용함을 보였다. 또한 후류처리 장치에 적용되는 원리의 고찰을 통하여 수직형 후류처리 장치의 개념을 제시하였다.

  • PDF