• Title/Summary/Keyword: exergy analysis

Search Result 113, Processing Time 0.029 seconds

The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process (증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석)

  • Yi, Joong Yong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.

A Study of Loss Prevention for Methanol Synthesis Process Based on Exergy Analysis (엑서지 해석에 기초한 메탄올합성공정의 손실예방책 연구)

  • Cho, Hyo-Eun;Chung, Yonsoo
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • A methanol synthesis process via reverse-water-gas-shift and methanol formation reactions has been analyzed using the notion of exergy. The analysis has been based on the simulation results with the aid of real operating data. Driving and material exergy losses have been defined and quantified, respectively. Locations and the reason of major exergy losses have been pinpointed and improvement strategies have been suggested. It had been noted that the exergy analysis can provide a sound scientific base for adopting the concept of industrial ecology and developing loss prevention schemes.

  • PDF

Consideration of Exergy and Exergy Ratio on T-s Chart of Water (물의 T-s 선도 상에서 엑서지 및 엑서지율의 고찰)

  • Kim, Deok-Jin;Kim, Duck-Bong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.827-832
    • /
    • 2009
  • Exergy is the amount of reversible work obtainable when some matter is brought to a state of thermodynamic equilibrium with ambient. This exergy is availability or useful work induced from carnot cycle, and this can calculate the irreversible loss work which occurs within any thermal or power cycle. The exergy ratio is the value of exergy divided by enthalpy of ambient reference, where the quality of energy or enthalpy in substances is evaluated by exergy ratio. Exergy is very important in optimal design method of thermal system or each component, and the value of exergy at given state is calculated by equation. Here, designer can easily understand and find the value of enthalpy because enthalpy is graphically drawn in chart, however exergy did not. In this paper, exergy and exergy ratio of air were drawn on temperature-entropy chart, and we wish to this chart is a help to design, analysis and education.

  • PDF

Exergy-Based Performance Analysis of Heavy-duty Gas Turbine in Part-Load Operating Conditions (엑서지를 이용한 대형 발전용 가스터빈의 부분부하 성능 분석)

  • Song, T.W.;Sohn, J.L.;Kim, J.H.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.751-758
    • /
    • 2001
  • Exergy concept is applied to the analysis of part-load performance of gas turbine engine. Exergy is a useful tool to find the source of irreversibility in thermal system. In this study, details of the performance characteristics of a heavy-duty gas turbine, l50MW-class GE 7FA model, are described by theoretical investigations with exergy analysis. Result shows that exergy destruction rate of gas turbine increases with decreased load, which means increase of irreversibility. Also, it is found that variations of IGV angle and amount of cooling air for turbine blades are closely related to the inefficiencies of compressor and turbine, respectively.

  • PDF

Energy and Exergy Analysis of Maeeum-Ri Geothermal District Heating System (지열을 이용한 매음리 지역난방에 관한 에너지 및 엑서지 분석)

  • Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • This study describes energy and exergy analysis of the Maeeum-Ri Geothermal District Heating System(MGDHS) of Ganghwa Island, Incheon, Korea. Design data are used to assess the performance of the geothermal district heating system. Geothermal resources of MGDHS are found to be low quality with specific exergy index of 0.029. Exergy losses occur in the pumps and heat exchangers as well as in the geothermal Quid and direct discharge. As a result, the total exergy losses accounts for 5.2% in pumps, 47% in the discharge, and 3.3% in heat exchanger based on the total exergy input to the entire MGDHS. The overall energy and exergy efficiencies of the system are found to be 28.8% and 44.5%, respectively.

  • PDF

Exergy analysis on the storage performance of the sensible heat storage unit (현열 축열조의 성능에 관한 엑서지 해석)

  • 김시범;권순석
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.176-182
    • /
    • 1988
  • The exergy analysis on the heat storage performance of the senible heat storage unit which consists of the heat storage material in the concentric annulus and the hot fluid flowing through the inner tube is performed. Heat transfer characteristics which are necessary for the performance of the exergy analysis is obtained from the energy balance equations and the second law of thermodynamics. As the index of heat storage performance, the exergy lossnumber $N_{s}$, and exergy storage ratio from the concepts of the second law of thermodynamics are defined. Results are ovtained for the grometry of the storage unit, the Biot number Bi, ambient temperature $T_{o}$ as parameters. From these results the exergy storage ratio can be considered as the efficiency of the hat storage unit and is introduced as a guide to design.

  • PDF

Energy and exergy analysis of CI engine dual fuelled with linseed biodiesel and biogas

  • S. Lalhriatpuia;Amit Pal
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.213-222
    • /
    • 2022
  • Our overdependence on the limited supply of fossil fuel with the burden of emission as a consequence of its utilization has been a major concern. Biodiesel is emerging as a potential diesel substitution for its similar performance, with the additional benefits of emitting lesser emissions. Due to the easy availability of feedstock for Biogas production, Biogas is studied for its use in CI engines. In this study, we considered Linseed Biodiesel and Biogas to run on dual fuel mode in a CI engine. An energy and exergy analysis was conducted to study the rate of fuel energy and exergy transformation to various other processes. Exergy relocation to exhaust gases was observed to be an average of 5% more for dual fuel mode than the diesel mode, whereas exergy relocation to the diesel mode was observed to be more than the dual fuel modes. Also, exergy loss to exhaust gas is observed to be more than the exergy transferred to cooling water or shaft. The exergy efficiency observed for biodiesel-biogas mode is only lesser by 3% compared to diesel-biogas mode, suggesting Biodiesel can be a substitute fuel for diesel.

Exergy Analysis of Nitrogen Distillation Column in the Cryogenic Air Separation Process (심랭식공기분리공정에서 질소증류탑의 엑서지 해석)

  • 용평순;이성철
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.145-150
    • /
    • 2002
  • The distillation column is one of large energy consumable units in the cryogenic air separation process and the accurate energy analysis of this unit is necessary for choice of energy saving process. In this work, the energy method was adopted for energy analysis of a cryogenic nitrogen distillation column. In order to designing the energy saving distillation column, the exergy distribution of feed air, exergy efficiency and exergy loss for process condition was investigated and the optimal process condition to minimize the exergy loss was found. The result from this work can be used as a guideline for the choice of the process design conditions and efficiency improvement of cryogenic distillation column.

Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm

  • Talebi, Saeed;Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2928-2938
    • /
    • 2020
  • A light water nuclear Reactor has been exergy analyzed, and the rate of irreversible exergy loss and exergy destruction is calculated for each of its components. The ratio of these losses compared to the total input exergy loss is calculated, which shows that most irreversible losses occur in the reactors, turbines, steam generators, respectively, as well as in the downstream operations. The main aim of this paper is to optimize the power plant using an innovative firefly algorithm and then to propose a novel strategy to improve the overall performance of the plant. As shown in the results, the exergy destruction rate of the plant decreased by 1.18% using the firefly method, and the exergy efficiency of the plant reached 29.3% comparing to the operational amount of 28.99%. Also, the results of the firefly optimization process compared to the Genetic algorithm and gravitational search algorithm to study the accuracy of the model for exergy analysis fitness problems in the power plants and the results of this comparison has shown that the results are nearly similar in the mentioned methods. However, the firefly is faster and more accurate in limited iterations.

Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles (습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.