• Title/Summary/Keyword: exercise metabolism

Search Result 207, Processing Time 0.025 seconds

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Effect of acute exercise on Adiponectin and Gut hormone (일시적 운동이 혈중 Adiponectin과 Gut hormone 농도에 미치는 영향)

  • Zhang, Seok-Am;Lee, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1194-1202
    • /
    • 2012
  • Adiponectin and Gut hormones(insulin, glucagon, ghrelin, PYY and GLP-1) are recently discovered peptides that are associated with lipid metabolism, insulin resistance, and control appetite. The purpose of this study was to investigate the effects of acute treadmill exercise(walking, 45min ; all-out running, 5min) on Adiponectin and gut hormones in high school ssireum player(light class, n=8; heavy class, n=8). From the experimental results, Adiponectin and ghrelin of light class were significantly higher than heavy class(p<.05), but there was no difference between pre and post exercise. Insulin level of heavy class was significantly higher than that of light class(p<.01) and no difference between pre and post exercise. Only glucagon significantly increased after exercise(p<.01), but no difference between classes. PYY and GLP-1 were no difference on classes and pre vs. post-exercise. The result of this study suggest that adiponectin, ghrelin and insulin were affected by body weight(light class vs. heavy class) and glucagon was affected by acute exercise.

Effects of Dietary Fatty Acid Composition on Pro- and Macro-Glycogen Utilization and Resynthesis in Rat Skeletal Muscle (식이 지방산 종류가 운동 시 조직 내 Pro-및 Macro-Glycogen의 동원 및 재합성에 미치는 영향)

  • Lee, Jong-Sam;Kim, Jae-Chul;Kwon, Young-Woo;Lee, Jang-Kyu;Lee, Jeong-Pil;Yoon, Chung-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • The purpose of this study was to investigate that the effect of dietary fatty acid composition on pro- and macro-glycogen utilization and resynthesis. The analyses were further extended for different muscle fibers (type I, type II, & type IIb) as well as tissues (i.e., liver & heart). Total one hundred sixty Sprague-Dawley rats were used, and rats were randomly allocated into four experimental groups: animals fed standard chow diet (n=40), animals fed saturated fatty acid diet (n=40), animals fed monounsaturated fatty acid (n=40), and animals fed polyunsaturated fatty acid (n=40). Animals in each groups were further divided into five subgroups: sacrificed at REST (n=8), sacrificed at immediately after 3 hr swim exercise (P-0HR, n=8), sacrificed at one hour after 3 hr swim exercise (P-1HR, n=8), sacrificed at four hour after 3 hr swim exercise (P-4HR, n=8), and sacrificed at twenty-four hour after 3 hr swim exercise (P-24HR, n=8). Soleus (type I), red gastrocnemius (type IIa), white gastrocnemius (type IIb), liver, and heart were dissected out at appropriated time point from all animals, and were used for analyses of pro- & macro-glycogen concentrations. After 8 weeks of dietary interventions, there was no significant difference in body mass in any of dietary conditions (p>.05). After 3 hr swim exercise, blood lactate level was higher compared to resting conditions in all groups, but it was returned to resting value after 1 hr rest (p<.05). Free fatty acid concentration was higher in all high fat fed groups(regardless of fatty acid composition) than CHOW consumed group. At rest, pro- & macro-glycogen concentration was not different from any of experimental groups (p>.05). Regardless of forms of glycogen, the highest level was observed in liver (p<.01), and most cases of supercompensation after 3hr exercise observed in this study were occurred in CHOW fed tissues. Except heart muscle, all tissues used in this study showed that pro- and macro-glycogen concentration was significantly decreased after 3 hr exercise. Based on these results, two conclusions were made: first, there is no different level of glycogen content in various tissues regardless of types of fatty acids consumed and second, the highest mobilization rate would be demonstrated from CHOW fed animals compare to animals that consumed any kinds of fatty acid diet if prolonged exercise is applied.

Change of Mitochondrial Biogenesis Genes on Regular Exercise Training in Adipocytes of Ovariectomized Rats Fed on High Fat Diet (규칙적 운동이 고지방식이 난소절제흰쥐의 지방세포에서 미토콘드리아 생합성 유전자들의 변화)

  • Lee, Jin
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.997-1003
    • /
    • 2011
  • Menopause and obesity are associated with metabolism. The purpose of this study was to examine the changes of PPAR${\gamma}$, PGC-1(${\alpha},\;{\beta}$), NRf-1 and TFAM mRNA and mitochondria biogenesis in adipocytes and investigate the effect of swimming exercise for 6weeks on ovariectomized rats. Rats were randomly assigned to 3 groups: (1) ovariectomized rats fed with a control diet (C, n=4), (2) ovariectomized rats fed with high fat diet (H, n=4), and (3) ovariectomized rats trained to exercise and fed with high fat diet (H+EX, n=4). Exercise was performed by swimming for 5 days/wk, with a progressive increase in exercise over the course of 6 weeks. Results showed that the fat tissue weight in the H group was markedly increased (p<0.01) compared to other groups, however, regular exercise significantly decreased fat weight. The PPAR-${\gamma}$ (p<0.05), PGC-$1{\alpha}$ (p<0.01), -$1{\beta}$ (p<0.05), NRf-1 (p<0.01) and TFAM (p<0.05) mRNA expression in the adipocytes of H+EX were higher than in the H group. These results suggest that regular exercise for 6 weeks might exert positive effects by increasing PPAR-${\gamma}$, PGC-1 (${\alpha},\;{\beta}$), NRf-1 and TFAM mRNA expression and mitochondria in adipocytes. Thus, regular exercise may be helpful in the improvement of mitochondria biogenesis function in obese, ovariectomized rats.

Effects of Multi-extracts of Mori Folium and of Exercise on Serum Lipid Profiles and Tissue Differentiation in Streptozotocin-induced Diabetic Rats

  • Ko, Young-Cheol;Seok, Hye-Jin;Song, Kyung-Hee
    • Nutritional Sciences
    • /
    • v.6 no.4
    • /
    • pp.209-215
    • /
    • 2003
  • This research was performed to investigate the effects of the supplementation of multi-extracts of mori folium (MF) and of exercise on blood lipid profiles and tissue differentiation in streptozotocin (STZ)-induced diabetic rats. The animal groups consisted of a normal-control group, a STZ-control group, three STZ-induced diabetic groups supplemented ad libitum with various amounts of MF extracts (MF-720, MF-360, and MF-180 groups), and a STZ-induced diabetic group supplemented with MF-360 combined with exercise; eight male Sprague-Dawley rats, 4 weeks old, were assigned to each experimental group and were raised in the laboratory for a 10 week experimental period. The MF supplementation group showed a significant reduction in levels of serum total cholesterol and triglyceride compared to the STZ-control group. HDL-cholesterol levels were significantly increased in the MF supplementation group compared to STZ-control group. The ratio of HDL-cholesterol to total cholesterol was significantly higher in MF supplementation group compared to the STZ-control group. The Atherogenic Index (AI) values in the MF supplementation groups were found to be significantly lower than in the STZ-control group. Serum AST and ALT levels were significantly reduced in the MF-supplementation groups compared to the STZ-control group. Total cholesterol level in the liver tissue was significantly decreased in the MF-360 group and in the MF-360 + exercise group compared to the STZ-control group. In immunohistochemical staining of the pancreatic islets of the MF-supplemented groups, a significantly higher number of insulin-immunoreactive cells were observed compared to the STZ-control group. In the MF supplementation groups, Bowman's capsules were clearly observed as hypertrophy of the glomeruli was not obvious. In the MF supplementation groups, a relative reduction in the hypertrophy of the basement membrane of the glomeruli and a significant reduction in the mesangium were observed compared to the STZ-control group. The results of this study suggest that supplementation of MF has beneficial effect in improving plasma lipid and tissue metabolism in streptozotocin-induced rats.

Effects of Dietary Supplementation with a Compound Composed of Caffeine, Capsaicin, Sesamine, L-Carnitine, Banaba and Lotus on Human Autonomic Nervous System Activity and Lipid Oxidation

  • Kang, Sung-Hwun;Shin, Ki-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • This study was conducted to determine if supplementation with a compound composed of caffeine (50 mg), capsaicin (75 mg), sesamine (30 mg), L-carnitine (300 mg), banaba (50 mg) and lotus (10 mg) enhanced human autonomic nervous activities (ANS) associated with thermogenic sympathetic activity and fat utilization. Ten healthy college males (21.2$\pm$1.0 yr) volunteered for this experiment. Autonomic nervous activities associated with energy metabolism were examined at 30 min intervals for a total of 120-min while at rest and every 5-min during exercise at 50% of the ventilation threshold before and after intake of the compound or placebo with 100 ml of water for 10 days. In addition, heart rate variability power spectral analysis was used to assess human autonomic nervous activities. The results indicated that there were no significant differences in heart rate during rest and exercise among trials. Furthermore, the autonomic nervous activity tended to increase after 10-days of consumption of the test compounds during the experimental period, but the differences did not reach statistical significance. However, before and after the compound test trial there was a significantly higher respiratory gas exchange ratio (rest 0: 0.83$\pm$0.01 vs. rest 3: 0.89$\pm$0.02, p<0.05), carbohydrate oxidation (CHO) rate (rest 0: 44.57$\pm$5.83 vs. rest 2: 63.86$\pm$5.91%, p<0.05) and a lower fat oxidation rate (rest 0: 55.43$\pm$5.83 vs. rest 2: 36.14$\pm$5.91%, p<0.05. In conclusion, the results of the present study suggested that the compound composed of caffeine, capsaicin, sesamine, L-carnitine, banaba and lotus components that was evaluated in this study did not induce a significant increase in human autonomic nervous activities or lipolysis, even though the individual components have been reported to induce increased fat oxidation.

The role of myokine(interleukin) and exercise for the prevention of scarcopenia and anti-inflammation (근감소 및 염증 예방을 위한 운동과 인터루킨(IL-interleukin)의 역할)

  • Byun, Yong-Hyun;Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.509-518
    • /
    • 2018
  • The purpose of this study was myokine product and role with physical activity and literature review. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular disease, colon cancer, dementia and even depression. And myokine has been regarded an important factor of exercise training and brain growth factor for the prevention of Alzheimier's disease. During exercise the release of anti-inflammatory myokine from contracting muscle controled the metabolic response, and IL-4, IL-6, IL-7, IL-10, and IL-15 controled muscle hypertrophy, myogenesis and angiogenenesis. IL-6 promoted the lipid metabolism through AMPK activation. IL-1Ra, IL-10 and sTNF-R inhibited $TNF-{\alpha}$ as the pro-inflammatory cytokine. IL-15 increased the releasing volume from contracting muscle, and promoted the anabolic factor of muscle growth. IL-7 and IL-8 activated the angiogenesis through the more activation of C-X-C receptor signal transmission.

Chest compression quality, exercise intensity, and energy expenditure during cardiopulmonary resuscitation using compression-to-ventilation ratios of 15:1 or 30:2 or chest compression only: a randomized, crossover manikin study

  • Kwak, Se-Jung;Kim, Young-Min;Baek, Hee Jin;Kim, Se Hong;Yim, Hyeon Woo
    • Clinical and Experimental Emergency Medicine
    • /
    • v.3 no.3
    • /
    • pp.148-157
    • /
    • 2016
  • Objective Our aim was to compare the compression quality, exercise intensity, and energy expenditure in 5-minute single-rescuer cardiopulmonary resuscitation (CPR) using 15:1 or 30:2 compression-to-ventilation (C:V) ratios or chest compression only (CCO). Methods This was a randomized, crossover manikin study. Medical students were randomized to perform either type of CPR and do the others with intervals of at least 1 day. We measured compression quality, ratings of perceived exertion (RPE) score, heart rate, maximal oxygen uptake, and energy expenditure during CPR. Results Forty-seven students were recruited. Mean compression rates did not differ between the 3 groups. However, the mean percentage of adequate compressions in the CCO group was significantly lower than that of the 15:1 or 30:2 group ($31.2{\pm}30.3%$ vs. $55.1{\pm}37.5%$ vs. $54.0{\pm}36.9%$, respectively; P<0.001) and the difference occurred within the first minute. The RPE score in each minute and heart rate change in the CCO group was significantly higher than those of the C:V ratio groups. There was no significant difference in maximal oxygen uptake between the 3 groups. Energy expenditure in the CCO group was relatively lower than that of the 2 C:V ratio groups. Conclusion CPR using a 15:1 C:V ratio may provide a compression quality and exercise intensity comparable to those obtained using a 30:2 C:V ratio. An earlier decrease in compression quality and increase in RPE and heart rate could be produced by CCO CPR compared with 15:1 or 30:2 C:V ratios with relatively lower oxygen uptake and energy expenditure.

Effects of aged garlic extract and endurance exercise on skeletal muscle FNDC-5 and circulating irisin in high-fat-diet rat models

  • Seo, Dae Yun;Kwak, Hyo Bum;Lee, Sung Ryul;Cho, Yeun Suk;Song, In-Sung;Kim, Nari;Bang, Hyun Seok;Rhee, Byoung Doo;Ko, Kyung Soo;Park, Byung Joo;Han, Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.177-182
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Irisin, a newly identified hormone, is associated with energy homeostasis. We investigated whether aged garlic extract (AGE) and exercise training intervention could improve body weight, insulin sensitivity, skeletal muscle fibronectin domain containing protein 5 (FNDC-5) levels, and plasma irisin in high-fat diet (HFD). MATERIALS/METHODS: Male Sprague Dawley rats were fed a ND (normal diet, n=5) or HFD (n=28) for 6 weeks. After 6 weeks, all rats were divided into 5 groups for the next 4 weeks: ND, (normal diet, n=5), HFD (high-fat diet, n=7), HFDA (high-fat diet + aged garlic extract, n=7), HFDE (high-fat diet + exercise, n=7), and HFDEA (high-fat diet + exercise + aged garlic extract, n=7). Exercise groups performed treadmill exercises for 15-60 min, 5 days/week, and AGE groups received AGE (2.86 g/kg, orally injected) for 4 weeks. RESULTS: Significant decreases in body weight were observed in the ND, HFDE, and HFDEA groups, as compared with the HFD group. Neither intervention affected the masses of the gastrocnemius muscle or liver. There were no significant differences in glucose levels across the groups. The homeostatic model assessments of insulin resistance were significantly higher in the HFD group, as compared with the ND, HFDA, HFDE, and HFDEA groups. However, skeletal muscle FNDC-5 levels and plasma irisin concentrations were unaffected by AGE or exercise in obese rats. AGE supplementation and exercise training did not affect skeletal muscle FNDC-5 or plasma irisin, which are associated with insulin sensitivity in obese rats. CONCLUSION: Our results suggest that the protection against HFD-induced increases in body fat/weight and insulin resistance that are provided by AGE supplementation and exercise training may not be mediated by the regulation of FNDC-5 or irisin.

The Effects of BCAA and Additional OKG or Albumin Pre-Supplementation on Energy Generation Substances and Hormone Changes during Submaximal Exercise (운동 전 BCAA, OKG 및 Albumin 가중 투여가 에너지 생성 물질과 대사관련 호르몬 변화에 미치는 영향)

  • Paik, Il-Young;Kwak, Yi-Sub;Suh, Sang-Hoon;Jin, Hwa-Eun;Kim, Young-Il;Woo, Jin-Hee
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.890-897
    • /
    • 2006
  • The purpose of this study is to investigate the effects of BCAA and additional OKG or albumin supplementation on energy metabolism and hormone changes in prolonged submaximal exercise. The subjects of this study were 5 male college students, and they took participated in each experiment. In each experiment (control, BCAA, BCAA+OKG, BCAA+albumin), the subject ran for 90 minutes on the treadmill. Blood was drawn and analyzed as glucose, FFA, ammonia, growth hormone, insulin, cortisol, $T_3$, and $T_4$. The obtained results were analyzed via two-way repeated ANOVA using SPSS program. A value of p<.05 was considered statistically significant. The concentration of glucose was the lowest in the BCAA supplement group, and there was significant difference between times of exercise (p<.05). In concentration of FFA, there was a significant difference between times of exercise and supplemented groups (p<.05). The concentration of blood ammonia was the lowest in the BCAA+albumin supplement group, and was the highest in the BCAA supplement group. Concentration of growth hormone, cortisol, $T_3$ and $T_4$ were increased as exercise progressed and decreased after all exercise. But concentration of insulin was decreased as exercise progressed. In these results, BCAA and additional OKG or albumin supplement with BCAA may make better effect to the increasing energy generation and inhibiting protein degradation during prolonged submaximal exercise.