• Title/Summary/Keyword: excreted-urine

Search Result 212, Processing Time 0.024 seconds

The Effect of Glycyrrhizae Radix on the Metabolism of Acetaminophen

  • Kim, Seung-Hee;Oh, Jee-Young;Aeree moon, Aeree-Moon;Kim, Hyo-Jung;Lee, Song-Deuck
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.160-165
    • /
    • 1993
  • The effects of Glycyrrhizae Radix (GR) on the metabolism of acetaminophen (AA) were examined in male Sprague-Dawley rats. The methanol extract of GR (500 mg/kg) was administered orally to rats for 6 days. AA and its metabolites excreted in bile, urine and blood within 120 min after dosing of AA (150 mg/kg, i.v.) were assayed by HPLC. Treatment of rats with the methanol extract of GR significantly increased the cumulative biliary excretion of AA-glucuronide (156% of the control) and decreased that of AA-sulfate (63% of the control). The cumulative urinary excretion of AA-glucuronide was also significantly increased to 132% of the control. GR treatment significantly increased total (biliary plus urinary) excretion of AA-glucuronide (172% of the control) without influencing thioether and sulfate conjugates of AA. The results clearly show that GR enhances UDP-glucuronosyl transferase-mediated detoxication of AA, but may not influence sulfotrans-ferase-mediated and cytochrome P-450-mediated metabolites formation.

  • PDF

Oxidative DNA Damage in Rats with Diabetes Induced by Alloxan and Streptozotocin

  • Lee, Young-Jin;Park, Young-Mee;Choi, Eun-Mi
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • The role of oxidative stress in the initiation and the complication of diabetes was examined by monitoring blood glucose increase and oxidative DNA damage in rats treated with alloxan or streptozotocin (STZ). Oxidative DNA damage was assessed by quantitating 8-oxo-2'-deoxyguanosine ($oxo^8dG)$ excreted in urine and the $oxo^8dG$ accumulated in pancreas DNA. Both alloxan and STZ treatments resulted in an abrupt increase in blood glucose and significant increases in urinary and pancreatic $oxo^8dG$. Pretreatment of buthionine sulfoximine (BSO), a glutathione-depleting agent, slightly potentiated the increase of blood glucose and urinary $oxo^8dG$ in the alloxan- and STZ-treated rats. Furthermore, the BSO pretreatment caused significant amplification of pancreatic $oxo^8dG$ increase in the rats. On the other hand, pretreatment with 1,10- phenanthroline (o-phen), a chelator of divalent cations, showed different results between alloxan- and STZ-treated rats. The o-phen pretreatment completely blocked diabetes and the increase of $oxo^8dG$ by alloxan treatment, while it potentiated the increase of blood glucose and $oxo^8dG$ by STZ treatment. The results demonstrate that the causative effect of alloxan on diabetes may be the generation of reactive oxygen species through a Fenton type reaction, but that of STZ may not.

  • PDF

Distribution and Excretion of Radioactivity Following Intraportal Administration of $^{166}$ 7Ho-Chitosan Complex to Rats (흰쥐의 간문맥으로 투여한 $_{166}$ Holmium-chitosan의 분포와 배설)

  • BAEK, Min Sun;PARK, Kyung Bae;KIM, Dong Hyun
    • Biomolecules & Therapeutics
    • /
    • v.5 no.3
    • /
    • pp.233-238
    • /
    • 1997
  • The distribution and excretion of radioactivity were examined after intraportal administration of sup 166/Ho-chitosan complex at a dose of 1 mcitg (10 mg chitosan/kg) to rats. Whole body macroautoluminographs showed that the radioactivity after an administration was concentrated in liver and perfused primarily to organs including kidney, spleen, and bone marrow, then to muscle and brain. Similar profiles were observed from 2 hr to 168 hr after the administration. The relative percentage of radioactivity in bone and spinal column increased with time, suggesting that free $^{166}$ Ho, released from chitosan complex deposited in the liver, selectively binds to these tissues. $^{166}$ Ho-chitosan complex administered intraportally was excreted less than 4% through urine (2.7$\pm$0.8%) and feces (0.65 $\pm$ 0.4%) up to seven days. These results demonstrate that the radio-activity of $_{166}$ Ho-chitusan complex when administered intraportally, mainly localizes in liver without affec-ting other tissues and organs. Considering the short half life of $^{166}$ Ho and the localization to the liver, $^{166}$ Ho-chitosan complex might be a useful agent in the treatment of hepatic carcinoma.

  • PDF

Metabolism and Excretion Study of DW116, A New Fluoroquinolone, in Rats

  • Jung, Byung-Hwa;Park, Young-Han;Park, Jongsei;Chung, Bong-Chul
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.358-362
    • /
    • 1997
  • Metabolite identification and urinary and biliary excretion of the new fluoroquinolone antibacterial agent DW116 [1-(5-fluoro-2-pyridyl)-6-fluoro-7-(4-methyl-1 -piperazinyl)-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid, hydrochloride] after oral administration have been studied in Sprague-Dawley rats. The excretion kinetics were monoexponential. Most of the drug was eliminated via the hepatic and renal routes. Mean renal clearance of DW116 was 73.4 ml/hr/kg and mean biliary clearance was 83.8 ml/hr/kg. The major metabolite excreted in the bile was identified as the glucuronide ester of the parent drug using base-hydrolysis of the conjugate metabolite followed by co-HPLC with standard compound, $^{19}$ F-NMR and LC-MS methods. The glucuronide conjugate was also found in urine. The mean urinary recoveries of free and total (free plus glucuronide ester) DW116 were $28.6{\pm}2.7% $and $36.4{\pm}1.8%$ of the administered dose and the corresponding biliary recoveries were $14.4{\pm} 5.5%$ and $37.0{\pm}7.6%$, respectively.

  • PDF

Effect of 5-Hydroxytryptamine(5-HT) on Renal Function in Dog (5-Hydroxytryptamine(5-HT)이 개의 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Na, Han-Kwang;Choe, In
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.7-18
    • /
    • 1996
  • 5-Hydroxytryptamine(5-HT, serotonin), when given into the vein, produced antidiuretic action accompanied with reduction of glomerular filtration(GFR), renal plasma flow(RPF), osmolar clearance(Cosm) and amounts of sodium or potassium excreted in urine( $E_{Na}$ , $E_{K}$), with the augmented reabsorption rates of sodium and potassium in renal tubules. 5-HT, when infused into a renal artery, exhibited diuretic action accompanied with the augmented RPF and increased $E_{Na}$ and $E_{K}$ in only infused kidney. Antidiuretic action of 5-HT infused into the vein was not influenced by ketanserin, 5-H $T_2$receptor blockade, given into a renal artery, vein or carotid artery, by methysergide, 5-H $T_1$receptor blockade, given into a renal artery, whereas above antidiuretic action was inhibited by methysergide given into vein or carotid artery. Diuretic action of 5-HT infused into a renal artery in only experimental kidney was blocked by ketanserin injected into a renal artery, was not influenced by methysergide administered into a renal artery. Above results suggest that 5-hydroxytryptamine(5-HT) produced the antidiuretic action through central 5-H $T_1$receptor and the diuretic action through 5-H $T_2$receptor located in renal tubules of kidney.ney.

  • PDF

A Study on the Changes of Urinary Hormonal Excretion and Renal Function During Three-shift Nursing Practice (일일 3교대 간호활동시 호르몬분비 및 신장기능의 변화에 관한 연구 -간호학생을 대상으로-)

  • 김명애
    • Journal of Korean Academy of Nursing
    • /
    • v.16 no.3
    • /
    • pp.78-96
    • /
    • 1986
  • The sympathico-adrenergic system and the hypophyseal-adrenocortical system mediates the regulation of the internal milieu. And the kidneys regulate both water and electrolyte balance of the body fluid. The kidneys are the sites of production of renin which participate indirectly in maintaining renin. angiotensin-aldosterone system. These system de-serve special attention in the context of adjustment the effects on the body function. And so, maximal exercise and work load are associated with home-osthetic function. The nurses working in the hospital have been complained of fatigue and stress by frequent duty changes and overload. In order to define this, the possible changes of hormonal excretion during three-shift nursing practice were investigated. Urine samples were collected at pre-duty and post-duty, and were measured with chemical assay and radioimmunoassay in 30 nursing students, in nursing practice and 43 nursing students, in studying. The results obtained were as follows. 1. In nursing practice, urinary norepinephrine concentration showed a marked increase during day duty, urinary cortisol concentration showed a marked increase during evening duty, and urinary renin concentration was increased in night duty, 2. Corrected ratio of urinary sodium excreted by the urinary excretion of creatinin (UNa/UCr) and UCl/UCr showed a marked decrease during night duty. Nursing practice did not affect on the UK/UCr and urinary concentrating ability. From these results, it is suggested that further studies the define the effects on some physiological function of the three-shift nursing practice against circadian rhythm are needed for better working condition of nurses.

  • PDF

Diuretic Action of Angiotensin II in Dog (Angiotensin Ⅱ의 이뇨작용(利尿作用))

  • Ko, Suk-Tai;Lee, Min-Jae;Hur, Young-Keun
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 1989
  • Angiotensin II, adminstered (infused or injected) intravenously, elicited the antidiuretic action with the decreased parameters of renal function at a small dose ($0.01\;{\mu}g/kg/min$), whereas, at a large dose (0.03, $0.1\;{\mu}g/kg/min$ and $5.0\;{\mu}g/kg$), it produced the diuretic action accompanied the increased amounts of sodium and potassium excreted in urine ($E_{Na}\;and\;R_K$). At this time, glomerular filtration rates (GFR) were weakened slightly and renal plasma flows (RPF) were reduced markedly, and then filtration fractions (FF) were increased. Angiotensin II, infused into a renal artery, exhibited antidiuretic action at a small dose ($0.003\;{\mu}g/kg/min$), and diuretic action at a large dose ($0.01\;{\mu}g/kg/min$), only in infused (experimental) kidney. The mechanism of the action was similar to the cases of the intravenous angiotensin II. The above results suggest that angiotensin II of a large dose produced diuretic action due to mechanism inhibiting reabsorption of electrolytes in renal tubules, mainly in proximal tubule in dog.

  • PDF

Effect of Nifedipine on Renal Function in Dogs (Nifedipine의 개 신장기능에 미치는 영향)

  • 고석태;은중영
    • YAKHAK HOEJI
    • /
    • v.31 no.6
    • /
    • pp.376-393
    • /
    • 1987
  • This study was performed in order to investigate the effect of nifedipine, a vasodilating drug which acts through calcium antagonism, on renal function using mongrel dog. Nifedipine, when given interavenously in doses ranging from 1.5 to 5.0$\mu\textrm{g}$/kg, elicited diuresis along with less changes of glomerular filtration rate and significant increases of renal plasma flow, so that the filtration fraction(FF) decreased significantly, at the same time both osmolar and free water clearances increased, and amount of sodium, potassium and calcium excreted in urine increased significantly. Nifedipine, when infused into a renal artery in doses from 0.05 to 0.15$\mu\textrm{g}$/kg/min, exhibited identical responses to the actions of intraveneous nifedipine except significant increase of glomerular filtration rate and no change of FF, which was confined only to the infused kidney. The renal action of nifedipine into a renal artery were not influenced by renal denervation, decreased significantly by ouabain, Na$^+$-K$^+$-ATPase inhibitor, which was given into a renal artery. Nifedipine infused into a renal artery in dog pretreated with propranolol i.v. produced diuresis associated with the increase of electrolytes excretion by reduction of electrolyte reabsorption and with no changes of glomerular filtration rate and renal plasma flow. Thus, it is concluded that nifedipine infused into a renal aretery produces diuretic action along with both improvement of hemodynamics and inhibition of electrolytes reabsorption, which may be related to sympathetic $\beta$-receptor or Na$^+$-K$^+$-ATPase activity because the action of nifedipine in kidney is blocked by propranolol or ouabain.

  • PDF

Mechanism of Naproxen-Induced Antidiuretic Response in Dog (나프록센의 항이뇨작용 기전)

  • 고석태;이한구;유강준
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.314-328
    • /
    • 1995
  • This study was attempted to investigate the mechanism of retention of sodium and water by naproxen which is a drug among nonsteroidal anti-inflammatory drugs in dogs. Napoxen, when given intravenously in doses ranging from 30 mg to 100 mg/kg, elicited antidiuresis accompanied vath the decrease of osmolar clearance(Cosm) and amounts of sodium excreted in urine(E$_{Na}$), with the increase of sodium reabsorption rate in renal tubule(R$_{Na}$) and ratio of potassium against sodium (K/Na). Naproxen infused into a renal artery in doses ranging from 1.0mg to 3.0mg/kg/min produced both diuretic action in infused kidney and antidiuretic action in control kidney. Naproxen injected into carotid artery in doses ranging from 10.0 mg to 30.0 mg/kg exhibited antidiuretic action. Changes of renal function in the circumstances of above two antidiuresis were the same with aspect of intravenous naproxen. Antidiuretic action of naproxen injected into carotid artery was not affected by renal denervation, was blocked by pretreatment with i.v. arachidonic acid, prostaglandin precursor, or i.v. indomethacin, cyclooxygenase inhibitor. Naproxen injected into carotid artery abolished the diuretic action of i.v. spironolactone, aldosterone antagonist, and i.v. spironolactone blocked the antidiuretic action of naproxen given into carotid artery. The results suggest that naproxen produced antidiuresis, and sodium and water retention through the central system, the mechanism being related to the prostaglandin biosynthetic inhibition and aldostercfne like action.

  • PDF

Receptor Specificity of Adenosine Analogs in Terms of Renal Function and Renin Release (Adenosine 유사체의 신장효과에 미치는 Adenosine 차단제의 영향)

  • Yun, Young-Yi;Koh, Gou-Young;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.269-280
    • /
    • 1990
  • The purpose of the present experiment was to determine the functional subclassification of renal adenosine receptor fer the hemdynamic, excretory and secretory functions in unanesthetized rabbits. Adenosine antagonist, 8-phenyltheophylline (8-PT) or theophylline, was infused into the left renal artery followed by an infusion of adenosine agonist, cyclohexyladenosine (CHA) or 5'-N-ethylcarboxamidoadenosine (NECA). Intrarenal arterial infusion of CHA or NECA caused decreases in urine volume, glomerular filtration rate, renal plasma flow and excreted amount of electrolytes and renin release in a dose-dependent manner. Dose-response curves in renal function by CHA or NECA was similar and shifted to the right with pretreatment of 8-PT or theophylline. No significant differences in renal response to CHA and NECA in antagonist-treated rabbits were observed. However, the decrease in renin secretion rate was not affected by the adminstration of adenosine antagonists. These results suggest that the renal effect of adenosine receptor agonists appears by way of specific adenosine receptor, but which is not functionally subclassified in the rabbit.

  • PDF