• Title/Summary/Keyword: excitatory amino acids

Search Result 30, Processing Time 0.018 seconds

Isolation and electrical characterization of the rat spinal dorsal horn neurons

  • Han, Seong-Kyu;Lee, Mun-Han;Ryu, Pan-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.175-175
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is Processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region and sites and cellular mechanisms of their actions have been a target of numerous studies. In this study, single neurons were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by the patch clamp method. Young rats (7-14 days) were anesthetized with diethyl-ether, and the lumbar spinal cord was excised and cut transversely at a thickness of 30$\mu\textrm{m}$ by Vibroslicer. The treatment of spinal slices with low concentration of proteases (pronase and thermolysin 0.75 mg/$m\ell$) and mechanical dissociation yielded isolated neurons with near intact morphology. Multipolar, ellipsoidal and bipolar, and pyramidal cells were shown. By applying step voltage pulses to neurons held at -70 mV, two types of inward currents and one outward currents observed. The fast activating and inactivating inward current was the Na$\^$+/ current because of its fast kinetics and blocking by 0.5${\mu}$M TTX, a specific blocker of Na$\^$+/ channel. The second type of inward currents were sustained. Based on their kinetics and current-voltage relations, it was likely that the second type of inward current was the voltage-dependent Ca$\^$2+/ current. In the presence of TTX, the steady-state currents mainly represented outward K$\^$+/ current which looked like the delayed rectifier K$\^$+/ current. In addition, the membrane currents produced by agonist of excitatory amino acid (EAA) receptor and the endogenous transmitter candidate L-glutamate were recorded in isolated whole-cell voltage clamped neurons as well as responses to inhibitory amino acids (${\gamma}$-amino butyric acid, glycine). Drugs were applied by a method that allows complete exchange of the solution within 1 sec; an infinite number of solutions can be applied to a single cell.

  • PDF

Effect of Capsaicin on the Excitatory Amino Acids Neurotranmitters in Medullary Dorsal Horn (Capsaicin이 연수후각의 흥분성 아미노산 전달물질에 미치는 영향)

  • Kwon, Soo-Kyung;Yoon, Soo-Han;Lee, Jong-Heun
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.621-632
    • /
    • 1994
  • This experiment was performed to study the effect of capsaicin on the excitatory amino acids (EAAs) neurotransmitter in medullary dorsal horn and to clarify the relationship between substance P and excitatory amino acids. Horizontal slice of rat medullary dorsal horn was prepared and perfused with modified Krebs-Ringer solution in brain slice chamber. Release of EAAs was induced by veratrine and capsaicin were added to perfusion solution to observe the changes in EAA release. Capsaicin and ruthenium red, capsaicin antagonist, were also systemically injected with 50mg/kg in first day and 100mg/kg in second day for 2 days. Medulla oblongata containing the medullary dorsal horn was isolated, homogenized and centrifused. Spernatant was freeze-dried and EAA was determined by HPLC. Release of glutamate and aspartate was significantly increased by veratrine or capsaicin, but veratrine evoked release of EAAs was blocked by capsaicin in vitro, and injected ruthenium red did not have effect on the contents of EMs in vivo. Systemically injected capsaicin evoked the slight decrease in content of glutamate and aspartate in medullary dorsal horn and this effect of capsaicin was unaffected by ruthenium red.

  • PDF

Inhibitory Effect of Fangchinoline on Excitatory Amino Acids. Induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Kim, Su-Don;Oh, Sei-Kwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • Glutamate receptors-mediated excitoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fanschinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a $Ca^{2+}$channel blockers on excitatory amino acids (EAAS)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$), N-methyl-D-aspartate (NMDA; 1 ${m}M$) and kainate (100$\mu\textrm{m}$)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate release into medium induced by NMDA (1 ${m}M$) and kainate (100$\mu\textrm{m}$), which was measured by HPLC. And fangchinoline (5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of $Ca^{2+}$influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.

  • PDF

Measurements of Extracellular Excitatory Amino Acid Neurotransmitter Levels in Corpus Striatum of Toluene Inhaled Rat by Microdialysis (톨루엔 흡입 흰쥐의 선조체에서 미세투석법을 이용한 세포외성 흥분성 아미노산 신경전달물질의 측정)

  • Baeck, Seung-Kyung;Kim, Hae-Kyu;Kim, Cheol-Min
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.95-100
    • /
    • 1998
  • Male Sprague-Dawley rats were exposed to the toluene at 3,000${\pm}$200ppm via inhalation for two hours (single inhalation group), three weeks by two hours per day, six days per wee k (repeated inhalation group). We examined the level of excitatory amino acids of the extracellular neurotransmitter within the corpus striatum of rats by using in vivo microdialysis. Aspartate (Asp) and glutamate (Glu) of excitatory amino acid neurotransmitters were generally decreased in the inhalation groups compared with the control group, and more significantly decreased in the repeated inhalation group than in the single inhalation group except that Asp was increased from 60 min after the beginning of the inhalation to 30 min after the termination.

  • PDF

Isolation and Electrical Characterization of the Rat Spinal Dorsal Horn Neurons (랫드 척수후각 단일세포 분리 및 특성에 관한 연구)

  • Han, Seong-Kyu;Ryu, Pan-Dong
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.283-292
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region. In this study, single neurons of the spinal dorsal horn were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by patch clamp technique. Transverse slice ($(300{\mu}m$) of lumbar spinal cords from young rats$(7{\sim}14\;days)$ were sequentially treated with two pretenses(pronase 0.75 mg/ml and thermolysin 0.75 mg/ml), then single neurons were mechanically dissociated. These neurons showed near-intact morphology such as multipolar, ellipsoidal and bipolar, and pyramidal cells and we recorded the typical whole cell currents of $K^+$, $Ca^{2+}$ and ligand-operated channels from these neurons. Glutamate $(30{\mu}M)$ and N-methyl-D-aspartate(NMDA, $30{\mu}M)$ induced inward currents of $117{\pm}12.4$ pA(n=5) and $49{\pm}6.9$ pA(n=3), respectively. Glycine $(1{\mu}M)$ potentiated glutamate-induced currents $4{\sim}5$ times and NMDA-induced currents $8{\sim}10$ times. In addition, glycine $(30{\mu}M)$ induced Inward current ($31{\pm}6.1$ nA, n=2), which was rapidly desensitized after the peak to a new steady-state level. However, the inward currents induced by ${\gamma}-amino$ butyric acid(GABA, $1{\mu}M$) decreased continuously after the peak($226{\pm}41.6$ pA, n=3) under the similar experimental condition. The ionic currents and pharmacological responses of isolated neurons in this work were similar to those observed in vivo or in vitro spinal cord slice, indicating that acutely isolated neurons could be effectively used for further pharmacological studies.

  • PDF

Functional Changes of Spinal Sensory Neurons Following Gray Matter Degeneration

  • Park, Sah-Hoon;Park, Jong-Seong;Jeong, Han-Seong
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.289-297
    • /
    • 1996
  • Excitatory amino acids (EAA) are thought to play an important role in producing cell death associated with ischemic and traumatic spinal cord injury. The present study was carried out to determine if the response characteristics of spinal sensory neurons in segments adjacent to degeneration sites induced by EAA are altered following these morphological changes. Intraspinal injections of quisqualic acid (QA) produced neuronal degeneration and spinal cavitation of gray matter. The severity of lesions was significantly attenuated by pretreatment with a non-NMDA antagonist NBQX. In extracellular single unit recordings, dorsal horn neurons in QA injected animal showed the increased mechanosensitivity, which included a shift to the left in the stimulus-response relationship, an increased background activity and an increase in the duration of after-discharge responses. Neuronal responses, especially the C-fiber response, to suprathreshold electrical stimulation of sciatic nerve also increased in most cases. These results suggest that altered functional states of neurons may be responsible for sensory abnormalities, e.g. allodynia and hyperalgesia, associated with syringomyolia and spinal cord injury.

  • PDF

Calcium Modulates Excitatory Amino Acid (EAA)- and Substance P-induced Rat Dorsal Horn Cell Responses

  • Shin, Hong-Kee;Kang, Sok-Han;Chung, In-Duk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 1999
  • Excitatory amino acid (EAA) and substance P (SP) have been known to be primary candidates for nociceptive neurotransmitter in the spinal cord, and calcium ions are implicated in processing of the sensory informations mediated by EAA and SP in the spinal cord. In this study, we examined how $Ca^{2+}$ modified the responses of dorsal horn neurons to single or combined iontophoretical application of EAA and SP in the rat. All the LT cells tested responded to kainate, whereas about 55% of low threshold (LT) cells responded to iontophoretically applied NMDA. NMDA and kainate excited almost all wide dynamic range (WDR) cells. These NMDA- and kainate-induced WDR cell responses were augmented by iontophoretically applied EGTA, but suppressed by $Ca^{2+},\;Mn^{2+},$ verapamil and ${\omega}-conotoxin$ EVTA, effect of verapamil being more prominent and well sustained. $Ca^{2+}$ and $Mn^{2+}$ antagonized the augmenting effect of EGTA. On the other hand, prolonged spinal application of EGTA suppressed the response of WDR cell to NMDA. SP had triple effects on the spontaneous activity as well as NMDA-induced responses of WDR cells: excitation, inhibition and no change. EGTA augmented, but $Ca^{2+},\;Mn^{2+}$ and verapamil suppressed the increase in the NMDA-induced responses and spontaneous activities of WDR cells following iontophoretical application of SP. These results suggest that in the spinal cord, sensory informations mediated by single or combined action of EAA and SP can be modified by the change in calcium ion concentration.

  • PDF

EFFECTS OF A VARIOUS DRUGS ON THE RELEASE OF NEUROTRANSMITTERS FROM TRIGEMINAL SENSORY NUCLEUS (삼차신경 감각핵의 신경전달물질 유리에 대한 수 종 약물의 효과)

  • Yoon, Jung-Hae;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.423-431
    • /
    • 1995
  • Trigeminal spinal sensory nucleus is a main relay site in transmission of orofacial pain. Glutamate and aspartate playa role in transmission of primary afferents. This experiment was performed to study the role of capsaicin, KR-25018 and shogaol on the release of glutamate and aspartate from trigeminal spinal sensory nucleus. Release of excitatory amino acids(EAAs) was induced by electrical stimulation of oral mucosa with innocuous or noxious stimuli. Capsaicin($10{\mu}M$), KR-25018($10{\mu}M$), shogaol($10{\mu}M$), ruthenium red and capsazapine were added to perfusion solution to observe the changes in EAA release, and glutamate and aspartate were determined by HPLC. Release of glutamate and aspartate from trigeminal sensory nucleus was increased by noxious stimulation of oral mucosa, but innocuous stimulation did not affect on the release of EAA Capsaicin and KR-25018 increased the release of glutamate and aspartate, and effect of KR-25018 on release of EAA was more potent than capsaicin. But shogaol had a weak effect on release of EAA. Effect of capsaicin and KR-25018 was partially blocked by capsaicin antagonists, ruthenium red and capsazepine.

  • PDF