• Title/Summary/Keyword: excitatory

Search Result 266, Processing Time 0.028 seconds

Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons

  • Lu, Cheng-Wei;Huang, Shu-Kuei;Lin, Tzu-Yu;Wang, Su-Jane
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2018
  • Echinacoside, an active compound in the herb Herba Cistanche, has been reported to inhibit glutamate release. In this study, we investigated the effects of echinacoside on spontaneous excitatory synaptic transmission changes induced by 4-aminopyridine (4-AP), by using the in vitro rat hippocampal slice technique and whole-cell patch clamp recordings from CA3 pyramidal neurons. Perfusion with echinacoside significantly suppressed the 4-AP-induced epileptiform activity in a concentration-dependent manner. Echinacoside reduced 4-AP-induced increase in frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but it did not affect the amplitude of sEPSCs or glutamate-activated currents, implicating a presynaptic mechanism of action. Echinacoside also potently blocked sustained repetitive firing, which is a basic mechanism of antiepileptic drugs. These results suggest that echinacoside exerts an antiepileptic effect on hippocampal CA3 pyramidal neurons by simultaneously decreasing glutamate release and blocking abnormal firing synchronization. Accordingly, our study provides experimental evidence that echinacoside may represent an effective pharmacological agent for treating epilepsy.

Localization of Glutamate-immunoreactive Neural Elements in the Dog Basilar Pons

  • Lee, hyun-Sook
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.381-388
    • /
    • 1997
  • Glutamate is a putative excitatory neurotransmitter in the central nervous system. The present study utilizing monoclonal antibodies against fixative-modified glutamate analyzed the distribution of glutamate-immunoreactive neuronal elements in the dog basilar pons. The glutamatergic neurons were present throughout the rostrocaudal extent of the basilar pons, predominantly to the medial and ventral subdivisions. Labelled cells were relatively sparse in the midline region of the medial nucleus and most lateral area of the lateral nucleus. The majority of glutamate-immunoreactive neuronal somata in the basilar pons was multipolar-shaped, and the size was in the range of 15-25 ${\mu}$m in diameter. Glutamate-immunoreactive axons and terminals were also observed at specific regions of the basilar pons. These observations provide evidence that this excitatory neural element functions in a multisynaptic pathway involving glutamatergic afferents to the basilar pons, pontocerebellar projection neurons, and the granule cells of the cerebellar cortex.

  • PDF

Functional Changes of Spinal Sensory Neurons Following Gray Matter Degeneration

  • Park, Sah-Hoon;Park, Jong-Seong;Jeong, Han-Seong
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.289-297
    • /
    • 1996
  • Excitatory amino acids (EAA) are thought to play an important role in producing cell death associated with ischemic and traumatic spinal cord injury. The present study was carried out to determine if the response characteristics of spinal sensory neurons in segments adjacent to degeneration sites induced by EAA are altered following these morphological changes. Intraspinal injections of quisqualic acid (QA) produced neuronal degeneration and spinal cavitation of gray matter. The severity of lesions was significantly attenuated by pretreatment with a non-NMDA antagonist NBQX. In extracellular single unit recordings, dorsal horn neurons in QA injected animal showed the increased mechanosensitivity, which included a shift to the left in the stimulus-response relationship, an increased background activity and an increase in the duration of after-discharge responses. Neuronal responses, especially the C-fiber response, to suprathreshold electrical stimulation of sciatic nerve also increased in most cases. These results suggest that altered functional states of neurons may be responsible for sensory abnormalities, e.g. allodynia and hyperalgesia, associated with syringomyolia and spinal cord injury.

  • PDF

Metabotropic glutamate receptor dependent long-term depression in the cortex

  • Kang, Sukjae Joshua;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2016
  • Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.

Effect of Aconitine upon Autonomic Nervous System in Isolated Rabbit Intestine (Aconitine이 가토(家兎)의 장관지배신경(腸管支配神經)에 미치는 영향(影響))

  • Lee, Chang Eop;Rhee, Young So;Chung, Soon Tong
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.2
    • /
    • pp.199-201
    • /
    • 1975
  • In order to investigate the effect of aconitine upon the parasympathetic innervation, the isolated rabbit duodenal preparation pretreated with atropine and tetrodotoxin were observed. The results obtained in this work were summerized as follows: 1. The excitatory response was evoked by the administration of aconitine ($100{\mu}g/ml$). 2. The contraction was blocked by the pretreatment with atropine ($10{\mu}g/ml$). 3. The contraction was completely blocked by the pretreatment with tetrodotoxin($10{\mu}g/ml$). These experimental evidences indicate that the excitatory response by aconitine is due to the parasympathetic nerves.

  • PDF

A Study on the Linearity Synapse Transistor of Analog Memory Devices in Self Learning Neural Network Integrated Circuits (자기인지 신경회로망에서 아날로그 기억소자의 선형 시냅스 트랜지스터에 관한연구)

  • 강창수
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.783-793
    • /
    • 1997
  • A VLSI implementation of a self-learning neural network integrated circuits using a linearity synapse transistor is investigated. The thickness dependence of oxide current density stress current transient current and channel current has been measured in oxides with thicknesses between 41 and 112 $\AA$, which have the channel width $\times$ length 10 $\times$1${\mu}{\textrm}{m}$, 10 $\times$ 0.3${\mu}{\textrm}{m}$ respectively. The transient current will affect data retention in synapse transistors and the stress current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the drain source current.

  • PDF

EEG model by statistical mechanics of neocortical interaction

  • Park, J.M.;Whang, M.C.;Bae, B.H.;Kim, S.Y.;Kim, C.J.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • Brain potential is described using the mesocolumnar activity defined by averaged firings of excitatory and inhibitory neuron of neocortex. Lagrangian is constructed based on SMNI(Statistical Mechanics of Neocortical Interaction) and then Euler Lagrange equation is obtained. Excitatory neuron firing is assumed to be amplitude- modulated dominantly by the sum of two modes of frequency .omega. and 2 .omega. . Time series of this neuron firing is calculated numerically by Euler Lagrangian equation. I .omega. L related to low frequency distribution of power spectrum, I .omega. H hight frequency, and Sd(standard deviation) were introduced for the effective extraction of the dynamic property in the simulated brain potential. The relative behavior of I .omega. L, I .omega. H, and Sd was found by parameters .epsilon. and .gamma. related to nonlinearity and harmonics respectively. Experimental I .omega L, I .omega. H, and Sd were obtained from EEG of human in rest state and of canine in deep sleep state and were compared with theoretical ones.

  • PDF

Evidence for Excitatory Input to Ventral Spinocerebellar Tract Neurons Mediated by Motoneuron Collaterals

  • Kim, Jong-Hwan;Shim, Dae-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1996
  • This study evaluated the hypothesis that motoneuron collaterals modulate the excitability of ventral spinocerebellar tract neurons. In acute cats, 128 ventral cerebellar tract cells were studied extracellularly to determine the effects of ventral root stimuli. The majority of the cells responded to ventral root stimulation with either short or long latency increases in spike discharge. In many cells with sufficient spontaneous activity ventral root stimulation also evoked a long lasting reduction in activity. In preparations with the dorsal root ganglion removed VSCT neurons had similar response properties. In some cells contralateral ventral root stimulation also evoked excitatory responses. These findings indicate the VSCT can provide the cerebellum with information regarding activity in the final output neurons of the motor system, the alpha motoneurons.

  • PDF

A Study on the Linearity Synapse Transistor in Self Learning Neural Network (자기인지 신경회로망에서 선형 시냅스 트랜지스터에 관한 연구)

  • 강창수;김동진;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.59-62
    • /
    • 2000
  • A VLSI implementation of a self-learning neural network integrated circuits using a linearity synapse transistor is investigated. The thickness dependence of oxide current density, stress current, transient current and channel current has been measured in oxides with thicknesses between 41 and 112 $\AA$, which have the channel width$\times$length 10$\times$1${\mu}{\textrm}{m}$ respectively. The transient current will affect data retention in synapse transistors and the stress current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor has represented the neural states and the manipulation which gave unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the drain source current.

  • PDF