• Title/Summary/Keyword: excitation spectrum

Search Result 320, Processing Time 0.029 seconds

Preparation and Photoluminescent Properties of Ca2PO4Cl Activated by Divalent Europium

  • Park, In Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.63-67
    • /
    • 2016
  • Divalent europium-activated $Ca_2PO_4Cl$ phosphor powders were prepared by a chemical synthetic method followed by heat treatment in reduced atmosphere, and the crystal structures, morphologies and photoluminescence properties of the powders were investigated by x-ray powder diffraction, scanning electron microscope and spectrometer. The effect of Ca/P mole ratio at the starting materials on the final products was evaluated. The optimized synthesis condition obtained in this study was Ca/P mole ratio of 2.0. The present phosphor materials had higher photoluminescence intensity and better color purity than the commercial blue phosphor powders, $(Ca,Ba,Sr)_{10}(PO_4)_6Cl_2:Eu^{2+}$. The result of excitation spectrum measurement indicated that the excitation efficiency of the synthesized powders was higher for the long-wavelength UV region than that of the commercial phosphor. It was thus concluded that the samples prepared in this study can be successfully applied for the light-emitting devices such as LED excited with long-wavelength UV light sources.

Cathodoluminescence of $Mg_2$$SnO_4$:Mn,:Mn Green Phosphor under Low-Voltage Electron Excitation ($Mg_2$$SnO_4$:Mn 녹색 형광체의 저전압 음극선 발광 특성)

  • Kim, Gyeong-Nam;Jeong, Ha-Gyun;Park, Hui-Dong;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.759-762
    • /
    • 2001
  • Mg$_2$SnO$_4$having an inverse spinel structure was selected as a new host material of $Mn^{2+}$ activator. The luminescence of the $Mg_2$SnO$_4$:Mn phosphor prepared by the solid-state reaction were investigated under ultraviolet and low-voltage electron excitation. The Mn-doped magnesium tin oxide exhibited strong green emission with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2$SnO$_4$:Mn phosphor is due to energy transfer from $^4T_1to ^6A_1\;of\; Mn^{2+}$ ion at tetrahedral site in the spinel structure. The optimum concentration of $Mn^{2+}$/ion exhibiting maximum emission intensity by the low-voltage electron excitation was 0.6mol%. ?

  • PDF

The Luminescent Mechnism and Cathodoluminescence of $CaTiO_3$:Pr Synthesized with CaO and $TiO_2$ Powders (CaO와 $TiO_2$분말로 합성된 $CaTiO_3$:Pr형광체의 발광구조 해석과 음극선 발광특성)

  • 박용규;한정인;곽민기;이인규;김대현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.646-651
    • /
    • 1998
  • In this present study, the luminescence characteristics and mechanism of energy $CaTiO_3$:Pr phosphor were studied using disk specimens sintered at various temperatures and envirenment. A single-phase $CaTiO_3$:Pr was synthesized by sintering above 140$0^{\circ}C$ and its crystal structure was found to be perovskite orthorhombic. A dominant peak around 360 nm and a broad peak around 395 nm were observed in the PLE(Photoluminescence Excitation) spectrum of $CaTiO_3$:Pr with fixed emission wavelength at 612 nm, the decay time of 360 nm excitation was found to be longer than that of 395 nm excitation. From this result, it is assumed that the free carrier excited to 360 nm is transferred to 395 nm energy level. Therefore, the decrease in 395 nm intensity observed in CaTiO$_3$:Pr specimens sintered in Ar gas environment induced shorter decay time and improved CL luminescence.

  • PDF

Cathodoluminescence Properties of Novel $Mg_2SnO_4$:Mn Phosphor under Low-Voltage Electron Excitation

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.13-17
    • /
    • 2001
  • The manganese-doped magnesium tin oxide with spinel structure was selected as a green phosphor for FED application and was synthesized by the solid state reaction. Its luminescence properties were investigated under low-voltage electron excitation. The $Mg_2SnO_4$:Mn phosphor showed green emission with the spectrum centered at 500 nm due to energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion. Optimum Mn concentration was 0.6 mole % and the decay time was shorter than 10 ms.

  • PDF

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • ;L. L. Koss
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.274-280
    • /
    • 2003
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they can be utilized to design efficient low frequency shakers.

Electronic Spectroscopy and Ligand Field Analysis of mer-Chloro(1,2-ethanediamine)(1,5,9-triazanonane)chromium(III) Tetrachlorzincate(II)

  • Park, Jong-Ha;Park, Yu-Chul;Kim, Hag-Sung
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.97-101
    • /
    • 2000
  • The 77 K emission and excitation spectra, and 298 K infrared and absorption spectra of mer-[CrCl(en)(dpt)]ZnCl$_4$(en=1,2-diaminoethane; dpt=1,5,9-triazanonane) have been measured. Ligand field electronic transitions due to spin-allowed and spin-forbidden are assigned. The zero-phonon line in the excitation spectrum splits into two components by 151$cm^{-1}$ /, and large$^2$E$^{g}$ splitting can be reproduced by the modern ligand field theory. It is confirmed that nitrogen atoms of the en and dpt ligands have a strong $\delta$-donor character, but chloride ligand has weak $\delta$-and $\pi$-donor properties toward chromium(III) ion.

  • PDF

Luminescence of $Eu^{3+}-doped\;GdCa_4B_3O_{10}$ phosphor under UV and VUV irradiation

  • Oh, Jae-Suk;Kwak, Chung-Heop;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1355-1359
    • /
    • 2006
  • Due to its efficient red emission, $Eu^{3+}$ ion has been doped in various host materials. $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor for red emission has been prepared by solid state reaction. Photoluminescence properties for the phosphor under UV and VUV excitation were investigated. The $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor under both excitation conditions shows typical red emission spectrum centered at 611 nm with several weak peaks due to energy transfer from $^5D_O\;to\;^7F_J(J=1,2,3,4)$ of $Eu^{3+}$ ion. On the other hand, the activator content exhibiting the concentration quenching under UV and VUV irradiation is 10 mole% and 2.5 mole%, respectively.

  • PDF

Luminescent properties of magnesium thiogallate phosphor with green emission for LEDs

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1331-1333
    • /
    • 2005
  • A magnesium thiogallate phosphor doped with europium was prepared by solid-state method. This phosphor has green emission near 535 nm due to the allowed transition from $4f^65d$ at an excitation state $(T_{2g})$ to $4f^7 (^8S_{7/2}) at a ground state of $Eu^{2+}$ ion. This phosphor shows a wide excitation spectrum from ultra violet (300 nm) to bluish green (515 nm).

  • PDF