• Title/Summary/Keyword: excitation performance

Search Result 696, Processing Time 0.029 seconds

PM Assisted, Brushless Wound Rotor Synchronous Machine

  • Ali, Qasim;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.399-404
    • /
    • 2016
  • This paper presents a new permanent magnet (PM) assisted topology for a recently introduced brushless wound rotor synchronous machine (BL-WRSM) [1]. The BL-WRSM had a dual-inverter configuration for generating a composite magneto motive force (MMF) with a fundamental component and a subharmonic component. The subharmonic component of the MMF is used for brushless excitation of the rotor. In this paper, additional PMs were introduced on the rotor of the BL-WRSM, making it a hybrid BL-WRSM. We also discussed the flux weakening operation for the hybrid BL-WRSM. The hybrid BL-WRSM offered advantages for starting the machine and provided better performance under full-load conditions. The finite element method (FEM) was used to analyze the performance of the hybrid BL-WRSM, and we compared its performance with BL-WRSM. Finally, prototypes were built with and without the PM-assistance, and experiments were conducted to demonstrate their performance.

A study on the parameter identification & stability analysis of the excitation system (여자 제어시스템의 안정도 및 정수추정에 관한 연구)

  • Rhew, H.S.;Lee, J.H.;Jung, C.K.;Lim, I.H.;Kim, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2187-2189
    • /
    • 1997
  • A performance test has been conducted on the dual channel excitation system. In this paper a description of the improved control system with detailed design concept is given. Field tests were done to estimate the system performance as well as to obtain the model parameters. We can get tile Excitation model parameters by simulation based on the field test value and algorithm of parameter estimation identification. With model parameters, Excitation system stability was also verified in this paper.

  • PDF

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

On a Pitch Alteration Technique by Cepstrum Analysis of Flattened Excitation Spectrum (평탄화된 여기 스펙트럼에서 켑스트럼 피치 변경법에 관한 연구)

  • 조왕래
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.159-162
    • /
    • 1998
  • Speech synthesis coding is classified into three categories: waveform coding, source coding and hybrid coding. To obtain the synthetic speech with high quality, the synthesis by waveform coding is desired. However, it is difficult to apply waveform coding to synthesis by syllable or phoneme unit, because it does not divide the speech into excitation and formant component. Thus it is required to alter the excitation in waveform coding for applying waveform coding to synthesis by rule. In this paper we propose a new pitch alteration method that minimizes the spectrum distortion by using the behavior of cepstrum. This method splits the spectrum of speech signal into excitation spectrum and formant spectrum and transforms the excitation spectrum into cepstrum domain. The pitch of excitation cepstrum is altered by zero insertion or zero deletion and the pitch altered spectrum is reconstructed in spectrum domain. As a result of performance test, the average spectrum distortion was below 2.29%.

  • PDF

Implementation of Multi-Mover Moving Magnet Type Linear Synchronous Motor (복수 가동자를 가지는 가동 자석형 선형 동기 전동기의 구현)

  • Kwak Mu-Shin;Sul Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.49-52
    • /
    • 2001
  • This paper presents a new partial excitation method of the moving magnet type linear synchronous motor(MMLSM) and proposes a new way of implementation for multi-mover MMLSM. Originally, partial excitation circuit which excites the coils only under the magnet is necessary for proper operation of MMLSM. In conventional partial excitation method there is inevitably impedance unbalance situation. So a new partial excitation method Is proposed to solve this impedance unbalance problem. Based on this partial excitation method, a novel control method for multi-mover MMLSM is proposed. The validity and performance of the proposed partial excitation method and multi-mover MMLSM is verified by experimental results.

  • PDF

The Study on Equipment Qualification of Emergency Diesel Generator Excitation Control System for Nuclear Power Plant (I) (원전 디젤발전기 여자시스템 기기검증시험에 관한 연구(I))

  • Lee, Joo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.143-145
    • /
    • 2007
  • The development of excitation control system (ECS) for emergency diesel generator in nuclear power plant is the replacement project of existing control system to resolve the maintenance problems caused by aging and obsolescence, The excitation control system is classified as a safety-related system. To guarantee the performance of developing excitation control system is equal to or higher than that of other systems, establishing the quality assurance scheme, doing software verification and validation activities, and planning equipment qualification. In this paper, we'd like to introduce the equipment qualification of excitation control system.

  • PDF

Development of the Triple Modular Redundant Excitation System with Simulator for 500MW Synchronous Generator (500MW 동기발전기용 시뮬레이터 탑재형 디지털 삼중화 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • TMR(triple modular redundant) digital excitation system with simulator is developed for tuning optimal control parameters during commissioning test and coping with system faults rapidly. A new system which mocks up virtual generator, turbine, grid can simulate as if excitation system is connected to a real generator system by setting four switches. The maintenance crew using the simulator is able to test perfectly the phase controller rectifiers, field breaker, sequence relays as well as TMR controller of the excitation system. Commissioning and performance results about the excitation system with simulator is discussed. The trial product was installed and operated at a 500MW thermal power plant after the commissioning test.

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.