• 제목/요약/키워드: excess sludge reduction

검색결과 26건 처리시간 0.025초

호기성소화에서 가용화가 슬러지 감량화에 미치는 영향 (Sludge Reduction by Mechanical Solubilization in the Aerobic Digestion)

  • 윤상현;장현섭;황선진
    • 상하수도학회지
    • /
    • 제20권5호
    • /
    • pp.763-770
    • /
    • 2006
  • The purpose of this study was to investigate the effects of mechanical(ball-mill) solubilization of excess sludge especially focused on the TSS(total suspended solid) reduction during the conventional aerobic digestion of sewage sludges including primary and/or excess sludge, HRT was examined at the 10 days and 20 days. According to the results of this study, TSS removal efficiency of solubilized excess sludge was almost two times higher than that of non-solubilized excess sludge. And as the proportion of the primary sludge increased, TSS removal efficiency became worse because primary sludge rarely contained microbial cells which could be easily solubilized physically. It was also proved that by the application of proper solubilization techniques to the excess sludge, HRT for the aerobic digestion could be lessened(above 50%) dramatically keeping the same or better digestion performance. The fact that between primary and excess sludges, only the excess sludge is quite effective in the sludge solubilization and in it's reduction says that excess sludge releasing sources are key-point in the sludge cake reduction field as a source control.

동역학계수 및 물질수지를 이용한 OSA공정의 잉여슬러지 감량능 평가 (Evaluation of Excess Sludge Reduction in the OSA Process using Kinetic Parameter and Mass Balance)

  • 남덕현;장형석;하금률;김준규;주재영;정인호;박철휘
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.530-538
    • /
    • 2009
  • The Oxic-Settling-Anaerobic (OSA) treatment process, a modified Conventional Activated Sludge (CAS) process, was developed for the purpose of sludge reduction. The insertion of a sludge holding tank into a sludge return line, an anaerobic reactor, forming an OSA process, may provide a cost-effective way of reducing excess sludge production during a process. The OSA process was evaluated for its sludge reduction ability by kinetic parameter and mass balance, with an observed excess sludge reduction of 63.5%, as $P_{X.VSS}$, compared with the conventional activated sludge process.

호알칼리미생물을 이용한 슬러지감량형 하수처리공정 연구 (A Study on the Sludge-reduced Sewage Treatment Process Combined with Sludge Solubilization Technique Using Alkalophiles)

  • 신경숙;김윤석;한대훈;한운우;이영하;허형우
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.737-744
    • /
    • 2007
  • Recently, one of the most interesting topic in the field of wastewater treatment is the disposal of excess sludge. The new concept of excess sludge reduction with recirculation of solubilized sludge via effective microorganisms for cell disruption within the wastewater treatment process has been developed in this study. The alkalophiles for degradation of sludge cell wall were isolated as Exiguobacterium sp., which could be more effectively solubilized sludge in the anaerobic condition. The SCOD of solubilized excess sludge by Exiguobacterium sp. was up to about 2,000mg/L and average TN and TP concentration of solubilized component were 117mg/L and 58mg/L, respectively and C/N ratio was more than 17. To investigate the effects of solubilized sludge by alkalophiles on excess sludge reduction and nutrient removal efficiency, the pilot plant of $DF^{(S)}-MBR$ process, combined with membrane bioreactor and sludge solubilization tank, was operated. In the control run(without sludge solubilization), the daily sludge production was about 4.54 kgMLVSS/day. However, in the $DF^{(S)}-MBR$(with sludge solubilization), the daily sludge production was decreased to 1.39kgMLVSS/day. The effluent quality satisfied the effluent regulation in both cases. Furthermore, the $DF^{(S)}-MBR$ showed relatively better TN removal efficiency in spite of high influent loading. So we concluded that the solubilized excess sludge by alkalophiles was effectively degraded in the MBR process as the carbon source and 70% of sludge reduction efficiency can be achieved.

호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구 (A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria)

  • 배윤선;김순영;남덕현;박철휘;김진수
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

전기응집 및 탈수 시스템을 이용한 슬러지 함수율 저감 특성 (Performance Evaluation of Electrocoagulation and Electrodewatering for the Reduction of Water Content in Wastewater Sludge)

  • 이재근;김영환;신희수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1098-1107
    • /
    • 2001
  • This study is to develop the pretreatment for the excess and digested sludge by elector-coagulation and dewatering. Electrocoagulation is applied to excess and digested sludge before transferring to the pistion type for dewatering. Piston type filter press as a laboratory scale plant was used to estimate the dewaterability. MMD of excess sludge was increased from initial diameter of particles ($34.16{\mu}m$) to the 87%($64.01{\mu}m$) after electrocoagulation. Al electrode is more effective than Fe electrode for the dewaterabiltity of excess sludge Electrodewatering after electrocoagulation as pretreatment makes the water content of sludge cake 50~60 wt%.

  • PDF

전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가 (A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process)

  • 정종민;김경일;심나타리아;박철희;이상협
    • 상하수도학회지
    • /
    • 제23권5호
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

폐슬러지 감량화 및 재활용을 위한 오존 처리시 하수슬러지내의 미생물 군집구조의 변화 (Change of Microbial Community on Ozonation of Sewage Sludge to Reduce Excess Sludge Production)

  • 홍준석;임병란;안규홍;맹승규
    • 상하수도학회지
    • /
    • 제18권1호
    • /
    • pp.59-65
    • /
    • 2004
  • The change of the microbial community structure in excess sludge of different sewage treatment plants by ozone treatment was investigated by quinone profiles. The resulting ozone dosage ranged from 0.1 to $0.4gO_3/gTS$. In terms of overall sludge reduction, more than 50% reduction of the total sludge mass could be achieved by ozone treatment at $0.4gO_3/gTS$. Quinone concentration and type in sludge of different treatment plants were remarkably decreases with increasing ozone dose. Ubiquinones(UQs)-8, -10 and MK-8 were still remained in the ozonized sludge at $0.4gO_3/gTS$. The results of this study showed that the remaining microorganisms belong to UQs-8, -10 and MK-8 were difficult to destruct cell membrane or wall by ozonation. Fecal Streptococci and Salmonella were not detected at ozone dose of $0.2gO_3/gTS$, but Fecal Coliform was not detected at ozone dose of $0.4gO_3/gTS$.

Effect of 3,3',4',5-Tetrachlorosalicylanilide on Reduction of Excess Sludge and Nitrogen Removal in Biological Wastewater Treatment Process

  • Rho, Sang-Chul;Nam, Gil-Nam;Shin, Jee-Young;Jahng, Deok-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1183-1190
    • /
    • 2007
  • A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.

오존을 이용한 하수슬러지의 감량화와 안정화 (Reduction and Stabilization of Sewage Sludge by Ozonation)

  • 이창근;황은주;강성재;빈정인;이병헌
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.290-295
    • /
    • 2004
  • In this study, ozone was adopted for the reduction and stabilization of waste sludge from the municipal sewage treatment plant. The waste sludge used in the experiments was primary sludge, excess sludge and a mixture of the two. The sludge cells and flocs were disrupted by ozonation resulting in the reduction of TSS and VSS concentrations. In the case of the primary sludge with a concentration of 20 gTS/L, the TSS and VSS concentrations were reduced 28%, 33% and the TCOD concentration was reduced 20% respectively. The consumption of ozone was $0.18gO_3/gSS$. In the case of the excess sludge with a concentration of 7.5 gTS/L, the TSS and VSS concentrations were reduced 37%, 41%, and the TCOD concentration was reduced 19% respectively. The consumption of ozone was $0.33gO_3/gSS$. In the case of the mixed sludge of 9.3 gTS/L, the TSS and VSS concentrations were reduced by 45%, 53%, and the TCOD was reduced 26% respectively. The desirable consumption of ozone was $0.27gO_3/gSS$. As ozonation proceeded, the level of SCOD increased due to the release of intracellular materials. However TCOD was reduced due to mineralization resulting from the transformation of organic materials to inorganic materials.

하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구 (A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant)

  • 김은혁;박명수;구슬기
    • 유기물자원화
    • /
    • 제30권4호
    • /
    • pp.5-13
    • /
    • 2022
  • 현대의 환경문제는 다량의 폐기물의 발생과 무분별한 에너지의 소비로 인한 환경오염이 가속화 되고 있다는 것이다. 대표적인 에너지 생산 연료인 화석연료는 에너지를 생산하는 과정에서 연소가 이루어져 다량의 온실가스가 발생하고 최종적으로 기후변화를 야기한다. 또한 전 세계적으로 발생하는 폐기물의 양도 지속적으로 증가하고 있으며 처리하는 과정에서 환경오염이 발생하고 있다. 이와 같은 문제들을 동시에 해결하기 위한 방법 중 하나는 유기성 폐기물의 에너지화 및 감량화이다. 하수처리장에서 발생하는 하수슬러지는 해양매립이 전면 금지된 이후로 다양하게 처리되고 있으나, 그 발생량은 지속적으로 증가하는 추세이다. 하수슬러지는 유기물을 다량 함유하고 있어 혐기소화를 통하여 하수슬러지를 에너지화 하고 최종 배출되는 폐기물을 감량화 하는 것이 바람직하다. 하지만, 잉여슬러지의 경우 대부분이 하수처리에 이용되었던 미생물 덩어리로써 잉여슬러지가 혐기성소화 되기 위해서는 먼저 미생물의 세포벽이 파괴되어야 하는데 세포벽 파괴에는 많은 시간이 요구되기 때문에 혐기성 소화 과정만으로는 높은 바이오가스 생산율이나 폐기물 감량율을 달성할 수 없다. 따라서 잉여슬러지를 가용화하는 전처리 공정이 필요하며, 여러 가지 가용화 공법 중에서 열적 가용화 공정이 가장 효율적인 것으로 검증되었고, 혐기성소화 공정의 전처리 과정으로써 열적가용화 공정을 이용하여 잉여슬러지에 포함된 세포벽을 파괴한 후 전처리 된 잉여슬러지를 혐기성소화 함으로써 높은 바이오가스 생산율과 폐기물 감량율을 달성할 수 있다. 본 연구에서는 열적 가용화장치를 통하여 TS 10%의 농축 잉여슬러지를 전처리하는데 있어서 체류시간 및 운전온도 변수에 따른 가용화 특성에 대한 연구를 수행하였다. 열적 가용화장치의 체류시간에 대한 실험변수는 운전온도를 160 ℃로 고정한 상태에서 각각 30분, 60분, 90분, 120분이었다. 실험 결과로 도출된 TCOD와 SCOD를 통해 계산된 가용화율은 각각 12.11%, 20.52%, 28.62%, 31.40% 순으로 증가하였다. 또한, 운전온도에 따른 변수는 반응시간을 60분으로 고정한 상태에서 각각 120℃, 140℃, 160℃, 180℃, 200℃였으며 가용화율은 각각 7.14%, 14.52%, 20.52%, 40.72%, 57.85% 순으로 증가하였다. 이 외에 TS, VS, T-N, T-P, NH4+-N, VFAs를 분석하여 농축 잉여슬러지를 대상으로 하는 열적 가용화 특성에 대한 평가를 수행 했으며, 그 결과 TS 10%의 농축 잉여슬러지에 대한 열적 가용화를 통하여 30% 이상의 가용화율을 얻기 위해서는 운전온도를 160℃로 고정할 경우 120분의 체류시간이 필요하며, 운전시간을 60분으로 고정할 경우 170℃ 이상의 운전온도가 요구되어 진다.