• Title/Summary/Keyword: excellent solution

Search Result 1,201, Processing Time 0.032 seconds

Balancing Loads on SONET Rings without Demand Splitting

  • Lee, Chae-Y.;Chang, Seon-G.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.303-311
    • /
    • 1996
  • The Self Healing Ring (SHR) is one of the most Intriguing schemes which provide survivability for telecommunication networks. To design a cost effective SONET ring it is necessary to consider load balancing problems by which the link capacity is determined. The load balancing problem in SONET ring when demand splitting is not allowed is considered in this paper. An efficient algorithm is presented which provides the best solution starting from various Initial solutions. The initial solution is obtained by routing ell demands such that no demands pass through an are In the ring. The proposed algorithm iteratively improves the Initial solution by examining each demand and selecting the maximum load are in its path. The demand whose maximum arc load is biggest is selected to be routed in opposite direction. Computational results show that the proposed algorithm is excellent both in the solution quality and in the computational time requirement. The average error bound of the algorithm is 0.11% of the optimum and compared to dual-ascent approach which has good computational results than other heuristics.

  • PDF

Variation of the Electrophoretic Mobility of Acid Mucopolysaccharides in Polyacrylamide Gel Electrophoresis (Polyacrylamide Gel Electrophoresis에 있어서 酸性 Mucopolysaccharide의 移動度의 變化)

  • Geum, Gi-Chang;Ru Do Wi Keu Jul, Ri O
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.132-137
    • /
    • 1974
  • Acid mucopolysaccharides were isolated from nucleus pulposus of whale embryo. The separation of acid mucopolysaccharides was most excellent in $0.03{\%}$ hexamine cobaltic chloride in 0.05 M-sodium acetate buffer solution at pH 4.8. Changes in electrophoretic mobility of acid mucopolysaccharides were observed when the sample solution on top of spacer gel were covered with $40{\%}$ sucrose solution. This effect was not observed by the addition of hexamine cobaltic chloride to the buffer solution.

  • PDF

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

Technology for Skin Rejuvenation and Homeostasis by Fermented Product with Micro-needle Therapy System (마이크로니들 시술에 의한 발효제품의 피부 재생 및 항상성 강화 기술)

  • Kim, Eun-Ju;Jung, Hyun-Ki;Kim, Sung-Jun
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • Fermented materials have been used for long time around the world and have been researched according to the excellent effect in the part of medical and food industry. However, when such materials are applied on skin, because of the skin barrier, the most effective ingredients are poorly absorbed. The absorption of the skin is exceedingly limited and the method of increasing skin absorption needs special procedures. The micro-needle therapy is a method used to improve the absorption of drug (solution) in the skin which is called "natural skin rejuvenation therapy". This therapy uses micro-needle which is equipped with very thin, delicate needles smaller than a 0.07 mm thick hair. During this therapy, the micro-needle makes small holes and helps absorb the solution into the skin. This is a very excellent therapy in skin absorption. It can be used in wide regions of the skin without any side effects and no recovery time. In 2007, the micro-needle is permitted to personal care. However, the solutions have not yet been developed professionally, and such skill is needed.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Corrosion Resistance by Organic/Inorganic Hybrid Solution for Cold Rolled Steel of SPCC and SPFC590 for Automobile (자동차용 냉연강판 SPCC와 냉연고장력강판 SPCF590의 유/무기 하이브리드 용액에 의한 내식특성)

  • Lee, So-Young;Lee, Kwang-Ho;Jeong, Hee-Rok;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • The cold-rolled steel sheet for automobile is liable to corrosion, and will be painting in a variety of ways for the anticorrosive. This paper was coated on cold rolled steel (SPCC and SPFC590) for automobiles using five kinds of organic/inorganic hybrid solution. This was evaluated corrosion resistance and so on by the salt spray. Corrosion area was less according to increasing of curing time in 2 types of steel plate with 5 types of the coating solution. No.1 solution was showed the best corrosion resistance regardless of the kinds of the steel sheet. It is judged that the melamin hardner had the role of bridge between $SiO_2$ polysilicate and urethan resin. Other properties were excellent in all solution.

Studies on the Preparation for the Simultaneous Removal of NO and $SO_2$ from Stationary Sources I.Surface properties and reactivity of $V_2O_5-MoO_3/TiO_2$ catalysts (고정원에서 배출되는 $NO_x/SO_x$의 동시제거를 위한 SCR 촉매의 제조법에 관한 연구: I. $V_2O_5-MoO_3/TiO_2$ 촉매들의 표면특성과 반응성)

  • 구미화;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.58-67
    • /
    • 1992
  • For removing $NO_x$ and $SO_x$ from the flue gases emitted from stationary sources, $V_2O_5-MoO_3/TiO_2$ catalysts were prepared by the conventional impregnation method (aqueous solution) and a sort of surface fixation method(nonaqueous solution) as reported excellent reproducibility catalysts. And these catalysts observed their catalytic activities as well as their surface properties. V-Mo-O oxide, prepared from nonaqueous solution of $VOCl_3$ and $Mo(CO)_6$ and aqeous solution method, was supported as amorphous state by XRD and SEM measurements. The infrared spectra of fresh and used catalysts showed that in used catalysts, V=O bands decreased and new bands of vanadium oxysulfate bands were very sensitive. So the catalysts prepared from nonaqueous solution may bring about the high activity. Results from catalytic activity measurements at 350$^\circ$C, in the presence of $SO_2, NO$ conversion was more increased than in absence of $SO_2$. As the $MoO_3$ was added to $V_2O_5/TiO_2 system, SO_2$ conversion increased. It found that from the results, $V_2O-5-MoO_3/TiO_2$ catalysts prepared from an nonaqueous solution may bring about the high activity for both the reaction of NO and $SO_2$ removal.

  • PDF