• Title/Summary/Keyword: evolutionary neural networks

Search Result 85, Processing Time 0.029 seconds

Fusion of Evolutionary Neural Networks Speciated by Fitness Sharing (적합도 공유에 의해 종분화된 진화 신경망의 결합)

  • Ahn, Joon-Hyun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.1-9
    • /
    • 2002
  • Evolutionary artificial neural networks (EANNs) are towards the near optimal ANN using the global search of evolutionary instead of trial-and-error process. However, many real-world problems are too hard to be solved by only one ANN. Recently there has been plenty of interest on combining ANNs in the last generation to improve the performance and reliability. This paper proposes a new approach of constructing multiple ANNs which complement each other by speciation. Also, we develop a multiple ANN to combine the results in abstract, rank, and measurement levels. The experimental results on Australian credit approval data from UCI benchmark data set have shown that combining of the speciated EANNs have better recognition ability than EANNs which are not speciated, and the average error rate of 0.105 proves the superiority of the proposed EANNs.

Evolutionary Neural Network based on DNA Coding Method for Time Series Prediction (시계열 예측을 위한 DNA코딩 기반의 신경망 진화)

  • 이기열;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.224-227
    • /
    • 2000
  • In this Paper, we prepose a method of constructing neural networks using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series, Sun spot data and KOSPI data.

  • PDF

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques (샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.88-95
    • /
    • 1998
  • This paper is the result of constructing information processing system such as living creatures' brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. In this paper, we propose a new method of designing neural networks using biological inspired developmental and evolutionary concept. Ontogeny of organism is embodied in cellular automata(CA) and phylogeny of species is realized by evolutionary algorithms(EAs). We call 'Evolving Cellular Automata Neural Systems' as ECANSI. The connection among cells is determined by the rule of cellular automata. In order to obtain the best neural networks in given environment, we evolve the arragemetn of initial cells. The cell, that is a neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to Exclusive-OR and parity problem.

  • PDF

A Learning Strategy for Neural Networks based on Evolutionary Algorithm (진화 알고리즘에 근거한 신경회로망 학습법)

  • Mun, K.J.;Hwang, G.H.;Yang, S.O.;Lee, H.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.408-410
    • /
    • 1994
  • This Paper Presents a learning strategy for neural networks based on genetic algorithms and evolution strategies. Genetic algorithms and evolution strategies are used to train weights of feedforward neural network to solve problems faster than neural network, especially backpropagation. Simulations are performed exclusive-OR problem, full-adder problem, sine function generator to demonstrate the effectiveness of neural-GA-ES.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

Development of Intelligent Robot Control Technology By Electroocculogram Analysis (안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발)

  • Kim Chang-Hyun;Lee Ju-Jang;Kim Min-Soeng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

Applications of artificial intelligence and data mining techniques in soil modeling

  • Javadi, A.A.;Rezania, M.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.53-74
    • /
    • 2009
  • In recent years, several computer-aided pattern recognition and data mining techniques have been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks are the most widely used pattern recognition methods that have been utilized to model soil behavior. Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical engineering with particular reference to constitutive modeling of soils. It covers applications of artificial neural network, genetic programming and evolutionary programming approaches for soil modeling. It is suggested that these systems could be developed as efficient tools for modeling of soils and analysis of geotechnical engineering problems, especially for cases where the behavior is too complex and conventional models are unable to effectively describe various aspects of the behavior. It is also recognized that these techniques are complementary to conventional soil models rather than a substitute to them.

Strategies for Evolution in Neural Networks based on Cellular Automata (셀룰라 오토마타 기반 신경 회로망의 진화를 위한 전략)

  • Jo, Yong-Goon;Lee, Won-Hee;Kang, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2193-2196
    • /
    • 1998
  • Cellular automata are dynamical systems in which space and time are discrete, where each cell has a finite number of states and updates its states by interactive rules among the cell-neighborhood. From the characteristics of self-reproduction and self- organization, it is possible to create a neural network which has the specific patterns or structures dynamically. CAM-Brain is a kind of such neural network system which evolves its structure by adopting evolutionary computations like genetic algorithms (GA). In this paper, we suggest the evolution strategies for the structure of neural networks based on cellular automata.

  • PDF