• Title/Summary/Keyword: evolutionary neural network

Search Result 96, Processing Time 0.029 seconds

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

Visual Servoing of Robot Manipulators using the Neural Network with Optimal structure (최적구조의 신경회로망을 이용한 로붓 매니퓰레이터의 비주얼 서보잉)

  • Kim, Dae-Joon;Lee, Dong-Wook;Chun, Hyo-Byong;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1269-1271
    • /
    • 1996
  • This paper presents a visual servoing combined by evolutionary algorithms and neural network for a robotic manipulators to control position and orientation of the end-effector. Using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we generate the control input to agree the target image, to realize the visual servoing. The validity and effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

A Co-Evolutionary Approach for Learning and Structure Search of Neural Networks (공진화에 의한 신경회로망의 구조탐색 및 학습)

  • 이동욱;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.111-114
    • /
    • 1997
  • Usually, Evolutionary Algorithms are considered more efficient for optimal system design, However, the performance of the system is determined by fitness function and system environment. In this paper, in order to overcome the limitation of the performance by this factor, we propose a co-evolutionary method that two populations constantly interact and coevolve. In this paper, we apply coevolution to neural network's evolving. So, one population is composed of the structure of neural networks and other population is composed of training patterns. The structure of neural networks evolve to optimal structure and, at the same time, training patterns coevolve to feature patterns. This method prevent the system from the limitation of the performance by random design of neural network structure and inadequate selection of training patterns. In this time neural networks are trained by evolution strategies that are able to apply to the unsupervised learning. And in the coding of neural networks, we propose the method to maintain nonredundancy and character preservingness that are essential factor of genetic coding. We show the validity and the effectiveness of the proposed scheme by applying it to the visual servoing of RV-M2 robot manipulators.

  • PDF

A Design of Artifical Neural Network Power System Stabilizer Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 신경망-전력계통안정화장치의 설계)

  • Park, Je-Young;Choi, Jae-Gon;Hwang, Gi-Hyun;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1177-1179
    • /
    • 1999
  • This paper presents a design of artificial neural network power system stabilizer(ANNPSS) using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses both a genetic algorithm(GA) and an evolution strategy(ES), useing the merits of two different evolutionary computations. ANNPSS shows better control performances than conventional power system stabilizer(CPSS) in three-phase fault with heavy load which is used when tuning ANNPSS. To show the robustness of the proposed ANNPSS, it is applied to damp the low frequency oscillation caused by disturbances such as three-phase fault with normal and light load. the proposed ANNPSS shows better robustness than CPSS.

  • PDF

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Neural Network Evolution based on DNA Coding Method (DNA Coding Method에 기반한 신경회로망 진화 기법)

  • Lee, Won-Hui;Kang, Hun
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.456-459
    • /
    • 1999
  • In this paper, we propose a new neural network based on the DNA coding method. The initial population of the structure information and the weights for the neural network is generated, and then the descendants are chose with the Elitist selection by the genetic algorithm. The evolutionary technique and the suitable fitness measure are used to find a neural network with the fractal number of layers. which represents a good approximation to the given function.

  • PDF

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

Evolutionary Algorithm for Recurrent Neural Networks Storing Periodic Pattern Pairs (주기적 패턴 쌍을 저장하는 Recurrent Neural Network를 찾는 진화 알고리즘)

  • Kim, Kwon-Il;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.399-402
    • /
    • 2007
  • 뇌 속 뉴런들의 네트워크는 근본적으로 recurrent neural networks(RNNs)의 형태를 지닌다. 이 논문에서는 반복되는 뉴런 반응 패턴들 사이의 관계를 네트워크에 저장함으로써 생물의 기억이 생성된다는 가정하에, 이를 표현할 수 있는 RNN 모델을 제안하였고, evolutionary algorithm을 통해 이러한 여러 쌍의 기억들이 저장된 네트워크가 존재할 수 있음을 보였다.

  • PDF

Control of Coupled Tank Level using Evolutionary Neural Network (진화 신경회로망을 이용한 이중 탱크의 수위제어)

  • Lee, Joo-Phil;Kim, Soo-Yong;Park, Doo-Hwan;Kim, Tae-Woo;Ji, Seak-Jun;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.550-552
    • /
    • 1999
  • This paper describes a control technique of coupled tank level using Evolutionary Neural Network. In general, the control of tank level without a dangerous overflow and with a high accuracy is difficult because of higher order time delay and nonlinearity. Nonetheless, proposed Evolution Neural Network controller in this paper was successfully implemented and simulation results of the superiority over a conventional PID one was investigated.

  • PDF