• 제목/요약/키워드: evolution heat

검색결과 379건 처리시간 0.025초

${Ni_3}Al-{Ni_3}V$ 준이원계 합금 포함 삼원계 시스템에서의 meso-scale 미세구조의 전산 모사에 관한 연구 (A computer simulation of the peso-scale microstructural evolution in the ternary Ni- ${Ni_3}Al-{Ni_3}V$ system)

  • 박성일;이혁모
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.947-952
    • /
    • 2001
  • The meso-scale microstructure of the $Ni-Ni_3Al- Ni_3V$ system is crucial to obtain both high strength and high toughness. Its evolution may be predicted with the aid of computer simulation of the compositional separation for heat-treated alloys. In this study, computer simulations of the hypothetical A-B-C ternary system, which is similar to the $Ni-Ni_3Al- Ni_3V$ system in terms of phase equilibria, have been performed using the kinetic modeling. Simulated morphologies were changed with nominal compositions and model parameters. It was showed the current model was useful and the more realistic model was proposed.

  • PDF

열교환기 네트워크의 자동합성 (Automatic synthesis of heat exchanger networks)

  • 오전근;김경미;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.613-618
    • /
    • 1986
  • In this study a s/w system(HENSPIN) for the automatic synthesis of HEN(heat exchanger network) was developed based on Pinch Design Method. The synthesized HEN by HENSPIN are satisfying performance targets such as minimum utility usage with as few as possible capital items. The invented network is near optimal in capital and operating cost. It will be used as initial structure for evolution to the structure which has optimal operability.

  • PDF

변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여 (On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation)

  • 민수홍;구본권
    • 오토저널
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF

Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구 (Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel)

  • 문준오;이창희
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델 (Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete)

  • 조호진;박상순;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

저합금강 소재의 열처리해석 기술개발 (Heat Treatment Analysis on Low-Alloy Steel)

  • 최영심;곽시영;최정길;김정태
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.215-223
    • /
    • 2005
  • A numerical analysis program is developed by FDM scheme for the prediction of microstructural transformation during heat treatment of steels. In this study, multi-phase model was used fur description of diffusional austenite transformations in low-alloy hypoeutectoid steels during cooling after austenitization. A fundamental property of the model consisting of coupled differential equations is that by taking into account the rate of austenite grain growth, it permits the prediction of the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimate the amount of martensite also by using K-M eq. In order to simulate the microstructural evolution during tempering process, another Avrami-type eq. was adopted and method for vickers hardness prediction was also proposed. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Modified heat of hydration and strength models for concrete containing fly ash and slag

  • Ge, Zhi;Wang, Kejin
    • Computers and Concrete
    • /
    • 제6권1호
    • /
    • pp.19-40
    • /
    • 2009
  • This paper describes the development of modified heat of hydration and maturity-strength models for concrete containing fly ash and slag. The modified models are developed based on laboratory and literature test results, which include different types of cement, fly ash, and slag. The new models consider cement type, water-to-cementitious material ratio (w/cm), mineral admixture, air content, and curing conditions. The results show that the modified models well predict heat evolution and compressive strength development of concrete made with different cementitious materials. Using the newly developed models, the sensitivity analysis was also performed to study the effect of each parameter on the hydration and strength development. The results illustrate that comparing with other parameters studied, w/cm, air content, fly ash, and slag replacement level have more significantly influence on concrete strength at both early and later age.

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.

나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정 (Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.