• Title/Summary/Keyword: evolution heat

Search Result 380, Processing Time 0.03 seconds

Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy (열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가)

  • Park, Sung-Hyun;Kim, Jae-Kwon;Kim, Seong-Woong;Kim, Seung-Eon;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

Effect of Heat Treatment on The Magnetic Properties of FeSiB Thin Film (열처리가 FeSiB 연자성 박막의 자기특성에 미치는 영향)

  • Hong, Jong-Wook;Jang, Tae-Suk;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.880-882
    • /
    • 2002
  • We have prepared magnetic thin films of FeSiB by sputtering and examined microstructure and magnetic properties of the annealed films in order to investigate the feasibility of the films to microsensor application. Effects of vacuum annealing on the magnetic properties of $Fe_{84}$$Si_{6}$$B_{10}$ films have been examined as a function of temperature. The heating rate and the holding time were 10 K/min and 1 hour, respectively. Vacuum condition was held during cooling to prevent oxidation of the films. The coercivity did not show any noticeable change (~1500 A/m), although the grain size of the crystalline phase in the annealed films increased gradually up to about 16 nm until 673 K. However, both the grain size and the coercivity increased steeply when the annealing temperature increased over 723 K. Since the saturation magnetization is closely related to the phase evolution, the variation of the saturation magnetization of the annealed films was similar to that of the ribbon materials; the thin films were transformed from amorphous to crystalline with $\alpha$-(Fe,Si) phase by increasing annealing temperature.

Corrosion Behavior of Solution-Treated Mg-8%Al-X%Zn Casting Alloys (용체화처리된 주조용 Mg-8%Al-X%Zn 합금의 부식 거동)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2015
  • The aim of this study is to investigate the effect of solution treatment on the corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys in 1M NaCl aqueous solution. After the solution treatment, all alloys showed single ${\alpha}$-(Mg) phase microstructure by dissolution of ${\beta}(Mg_{17}Al_{12})$ phase into the ${\alpha}$-(Mg) matrix. The $H_2$ evolution volume decreased with an increase in Zn content, which indicates that the addition of Zn plays a beneficial role in decreasing corrosion rate of the Mg-Al-Zn alloy in solution-treated state. The microstructural evaluations on the corrosion products and corroded surfaces after the immersion test in 1 M NaCl solution revealed that the incorporation of more $Al_2O_3$ and ZnO into the corrosion product, by which the penetration of $Cl^-$ ions is impeded, are thought to be responsible for the better corrosion resistance in relation with the Zn addition.

Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel (금속수소화물 수소 저장 용기 내부의 수소흡장에 대한 수치해석적 연구)

  • Nam, Jin-Moo;Kang, Kyung-Mun;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.249-257
    • /
    • 2010
  • In this paper, a three-dimensional hydrogen absorption model is developed to precisely study hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed simulation results shows that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that the hydrogen absorption is so efficient during the early hydriding process and thus local cooling effect is not influential. On the other hand, nonuniform distributions are predicted at the latter absorption stage, which is mainly due to different degrees of cooling between the vessel wall and core regions. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen absorption process and further indicates that efficient design of storage vessel and cooling system is critical to achieve fast hydrogen charging and high hydrogen storage efficiency.

Effect of I/d Parameter on Recrystallization Textures of AA5182 Alloy Sheets (5182 알루미늄 합금판재의 재결정 집합조짓에 대한 I/d 파라메타의 영향)

  • Kim, Kee-Joo;Won, Si-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1086-1093
    • /
    • 2011
  • To fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets due to the change of lid parameter after rolling and subsequent annealing was studied. The measurement of the deformation textures was carried out for the sheets with high reduction ratio and the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets in various I/d parameters. Rolling without lubrication and subsequent annealing led to the formation of favorable rot-$C_{ND}$ {001}<110> and ${\gamma}$-fiber ND//<111> textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at high lid parameter of 6.77. The initial shear deformation texture, especially, ${\gamma}$-fiber ND//<111> was not rotated during heat treatment in holding time of 180~7,200 seconds on AA5182 with I/d parameter of 6.77. Therefore, the AA5182 sheets were fabricated by controlling I/d parameter having well evolved ${\gamma}$-fiber ND//<111> which was advantageous in good drawability of the sheets.

Analysis of Start-up Characteristics of a Heat Recovery Steam Generator Considering Thermal Constraints (열적 제한요소를 고려한 열회수 증기발생기의 시동 특성 해석)

  • Kim, Young Il;Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1410-1417
    • /
    • 1999
  • A thorough understanding of the transient behavior during start-up is essential in the design and operation of the heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. In this work, a transient formulation of the HRSG is constructed including the estimation of the thermal stress and fatigue of the drum wall. Start-up behavior of a single-pressure HRSG is analyzed and the effect of bypassing part of the gas turbine exhaust flow on the thermal stress evolution is examined. It is found that the modulation of the gas flow rate using a bypass damper is very useful in view of reducing the thermal stress of the drum and ensuring the fatigue lifetime.

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants (초초임계압 발전용 소재의 표면처리층의 고온 안정성 평가)

  • Ryu, K.H.;Song, T.K.;Lee, J.H.;Kim, G.S.;Lee, S.H.;Urm, K.W.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.

Study on evolution in smallpox therapy until 17th century in Europe (17세기이전 유럽에서 -시두 대처방법의 변천 과정에 대한 고찰)

  • Yun, Suk-Hyun;Kim, Yong-Jin
    • Journal of Haehwa Medicine
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • 21th century is a era of new pandemic. We are facing a new challenge and need a new way of approach. But eastern medicine and western medicine is clinging to their own way and have no intention to hear other one's opinion. Before the invention of the vaccination, smallpox has always been a major problem. Intellectuals in every country tried their best to find the treatment for the smallpox, and for Europian, didn't hesitate to borrow some knowledge of the pagon. Romans adopted the Galens concept, running away from the epidemic lesion. Christianity made smallpox Saints, and later adopted Razes heat therapy. But in the 17th century, these methods didn't turn out well, so they needed a new way of approach. By this movement, they had adopted the Chinese inoculation concept and invented a vaccination, By studying the effort of the Europian intellectuals who had tried their best to find the treatment for the smallpox until 17th century, we might get a glimps of wisdom which they had shown us. By this paper we can feel the passion to learn new techniques and their open mind and courage, which might be also needed in the 21th century, era of new pandemic.

Microstructural Characterization of Hot Extruded Al-Zn-Mg-Cu Alloys Containing Sc (Sc을 첨가한 Al-Zn-Mg-Cu 합금 압출재의 열처리에 따른 미세구조 변화)

  • 이혜경;서동우;이상용;이경환;임수근
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The microstructural changes of Al-Zn-Mg-Cu alloy containing Sc during hot extrusion and post heat treatment were investigated. Two kinds of Al-Sc alloys with different alloying elements (B1, B2) were hot extruded to make T-shape bars at extrusion temperature of $380^{\circ}C$, then the bars were solution treated at $480^{\circ}C$ for 2hrs followed by artificial aging at $120^{\circ}C$ for 24hrs. The interior microstructure of as extruded bar consisted of elongated grains, however, fine equiaxed grains were also observed around surface. The microstructural gradient suggested that different restoration process could proceed during the hot extrusion. For B1 and B2, different grain growth behaviors were found around the surface during the post heat treatment. Rapid grain growth behavior was observed for B1 around the surface, however, it was not observed for B2. Orientation pinning, which was related with the evolution of preferred orientation, and precipitation were thought to be responsible for the rapid grain growth.