• Title/Summary/Keyword: evolution heat

Search Result 380, Processing Time 0.03 seconds

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting (알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가)

  • Kwon, Minsol;Go, Jaeseong;Lee, Yesol;Lee, Sungmin;Yu, Jisu;Lee, Hyowon;Song, Sung Ho;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution (미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석)

  • Jeong Ho-Seung;Cho Jong-Rae;Park Hee-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

Effect of Heat Treatment Environment on the Properties of Cold Sprayed Cu-15 at.%Ga Coating Material for Sputtering Target (스퍼터링 타겟용 저온 분사 Cu-15 at.%Ga 코팅 소재의 특성에 미치는 열처리 분위기의 영향)

  • Choi, Byung-Chul;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.552-561
    • /
    • 2011
  • This study attempted to manufacture a Cu-15 at.%Ga coating layer via the cold spray process and investigated the effect of heat treatment environment on the properties of cold sprayed coating material. Three kinds of heat treatment environments, $5%H_2$+argon, pure argon, and vacuum were used in this study. Annealing treatments were conducted at $200{\sim}800^{\circ}C$/1 hr. With the cold sprayed coating layer, pure ${\alpha}$-Cu and small amounts of $Ga_2O_3$ were detected in the XRD, EDS, EPMA analyses. Porosity significantly decreased and hardness also decreased with increasing annealing temperature. The inhomogeneous dendritic microstructure of cold sprayed coating material changed to the homogeneous and dense one (microstructural evolution) with annealing heat treatment. Oxides near the interface of particles could be reduced by heat treatment especially in vacuum and argon environments. Vacuum environment during heat treatment was suggested to be most effective one to improve the densification and purification properties of cold sprayed Cu-15 at.%Ga coating material.

Effects of Solution Treatment Temperatures on Microstructure and Mechanical Properties of TIG-MIG Hybrid Arc Additive Manufactured 5356 Aluminum Alloy

  • Zuo, Wei;Ma, Le;Lu, Yu;Li, Shu-yong;Ji, Zhiqiang;Ding, Min
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1346-1358
    • /
    • 2018
  • A novel additive manufacturing method with TIG-MIG hybrid heat source was applied for fabricating 5356 aluminum alloy component. In this paper the microstructure evolution, mechanical properties and fracture morphologies of both as-deposited and heat-treated component were investigated, and how these were affected by different heat-treated temperature. The as-deposited microstructure showed dominant equiaxed grains with second phase, and the size of them is coarse in the bottom region, medium in the middle region and fine in the top region owing to different thermal cycling conditions. Compared with as-deposited microstructure, the size of grain becomes large and second phases gradually dissolve in the matrix as heat-treated temperature increase. Different microstructures determine the mechanical properties of component. Results show that average ultimate tensile strength enhances from 226 to 270 MPa and average microhardness increases from 64.2 to 75.3 HV0.1 but ductility decreases from 33 to 6.5% with heat-treated temperature increasing. For all components, the tensile properties are almost the same in the vertical direction (Z) and horizontal direction (Y) due to equiaxed grains, which exhibits isotropy, and the mechanisms of these are analyzed in detailed. In general, the results demonstrate that hybrid arc heat source has the potential to fabricate aluminum alloy component.

Precision Measurement of the Hydration of Mortar by Ultrasonic and Dielectric Method (초음파 및 유전성을 이용한 모르타르(Mortar) 수화(Hydration) 과정의 정밀측정)

  • Han, E.K.;Lee, M.H.;Kim, S.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.56-68
    • /
    • 1989
  • Recently, there are many fields have been required for the precision measurements, as an advanced example of which, a precise change of inner structure during the hydration process of mortar was observed by ultrasonic and dielectric measurements. The results show that it is possible to determine the safety of mortar and mixing ratio, and strength growth and shrinkage rate by heat evolution.

  • PDF

Influences of Sodium Gluconate on the Physical Properties of Portland Cement Pastes and Mortars (포틀랜드 시멘트 페이스트 및 몰탈의 물성에 미치는 글루콘산 나트륨의 영향)

  • 김창은;이승헌;김원기;이경원
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 1987
  • The changes of physical properties of portland cement pastes and mortars were investigated by addition of sodium gluconate. Flow table experiment and viscosity measurement were took in order to find dispersing effect, and time-dependent changesof viscosity and rates of hydration heat evolution were carried out for the sake of finding retardation effect of hydration. And changes of physical properties of cement pastes and mortars were discussed by setting time, compressive strength and porosity.

  • PDF

Properties of the Active Belite Cement with Slag (슬래그를 혼합한 고온형 벨라이트 시멘트의 특성)

  • 안태호;박동철;심광보;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.599-603
    • /
    • 1999
  • In an effort to improve the mechanical properties of the belite cement active belite cement clinker was synthesized. Properties of the clinker were characterized by a XRD, FT-IE optical microscopy and SEM. The additive effects of slag on the hydration properties were investigated by the measurement of compressive strength heat evolution and SEM. The experimental results exhibited that the 3wt% borax was effective in stabilizing $\alpha$'-C2S and the addition of 5wt% anhydrite and 40wt% slag wee effective in the hydration.

  • PDF

Application for parallel computation for finite element analysis of welding processes (용접공정 유한요소 해석의 병렬 처리 적용)

  • 임세영;김주완;최강혁
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.273-275
    • /
    • 2004
  • A parallel multi-frontal solver is developed for finite element analysis of an arc-welding process, which entails phase evolution, heat transfer, and deformations of structure. We verify the code via comparison to a commercial code,SYSWELD. Attention is focused on the implementation of the parallel solver using MPI library, on the speedup by parallel computation, and on the effectiveness of the solver in welding application

  • PDF

Thermoelectric Imaging of Epitaxial Graphene

  • Jo, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes, to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high sensitivity imaging of structural disorder on the atomic and nanometre scales. Using this imaging technique, we discovered a defect-mediated dimensional evolution of strain-response patterns in epitaxial graphene with increasing thickness.

  • PDF