• Title/Summary/Keyword: evolution heat

Search Result 379, Processing Time 0.026 seconds

Properties of Blended Cement Using Ground Blastfurnace Slag with Low Blain Value (저 분말도 고로슬래그 분말을 사용한 혼합시멘트의 물성)

  • 송종택;김재영;최현국;변승호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.70-76
    • /
    • 2000
  • In order to investigate the properties of the blended cement using coarsely ground blasturnace slag blended coements which were substituted from 10 to 70 wt% low Blaine slag powder (2,000 and 3,000 cm2/g) for porland cement clinker were prepared and Cal(OH)2 contents in hydrates hydration heat the fluidity and the compressive strength were measured. As the content of slag was increased the hydration heat and the early strength was decreased and the fluidity of the cement paste was improved. The heat evolution of the cement with 2,000cm2/g slag was lower than that of 3,000 cm2/g slag blended cement. Especially the heat evolution of 60wt% or above slag blended cement was similar to that of belite rich cement.

  • PDF

PREDICTION OF MICROSTRUCTURE EVOLUTION AND HARDNESS DISTRIBUTION IN THE WELD REPAIR OF CARBON STEEL PIPELINE

  • Li, Victor;Kim, Dong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.205-210
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial [mite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

Prediction of Microstructure Evolution and Hardness Distribution in the Weld Repair of Carbon Steel Pipeline

  • Li, V.;Kim, D.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial finite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that Implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE

  • Lei, Yutian
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.585-603
    • /
    • 2007
  • The author studies the local $H\ddot{o}lder$ convergence of the solution to an evolution equation of p-Ginzburg-Landau type, to the heat flow of the p-harmonic map, when the parameter tends to zero. The convergence is derived by establishing a uniform gradient estimation for the solution of the regularized equation.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity Al2O3 Using Micro-lithographic Technique - I. Formation of Crack-like Pore and Its Morphological Evolution (Ion Implantation으로 Ca를 첨가한 단결정 Al2O3의 Crack-like Pore의 Healing 거동 - I. Crack-like Pore의 형성과 Morphological Evolution)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.834-842
    • /
    • 1997
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina single crystal, sapphire, had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press technique. The morphological change and the healing of cracklike pore in Ca doped high purity single crystal alumina, sapphire, during high temperature heat treatment in vacuum were observed using optical microscopy. The dot-like surface roughening was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO.6Al2O3, were observed on the inner surface after 1 hour heat treatment at 1, 50$0^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at 1, $600^{\circ}C$. This disappearance means that there should be a little increase of Ca solubility limit to alumina at this temperatures.

  • PDF

Effect of Heat Treatment on the Microstructural Evolution of Pt-aluminide Coated Ni-based Superalloy (Pt-Aluminide로 코팅된 초내열합금의 열처리에 따른 미세조직변화)

  • Joo, D.;Park, S.H.;Jung, Y.G.;Lee, K.H.;Kim, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Microstructural evolution of Pt-aluminide coated Ni-based superalloy has been investigated with ductilization heat treatment. The Pt coat was prepared on the superalloy and then aluminide coating was conducted using a pack cementation process. Samples were heat-treated at $1050^{\circ}C$ for 2 hrs and the microstructure and element analysis were preformed. A various precipitated compounds were observed within the coating layer and the diffusion region in the Pt-aluminide coating and heat treatment, indicating that the bi-phase compounds of $PtAl_2$ and NiAl were performed during the Pt-aluminide coating, whereas $M_{23}C_6$, MC, $Ni_3Al$ and ${\sigma}$ phases were precipitated in the inter-diffusion region. The bi-phase compounds of $PtAl_2$ and NiAl were transformed into the single phase compound of $PtAl_2$ with the heat treatment, increasing the amount of carbide and ${\sigma}$ phase.

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF