• 제목/요약/키워드: evolution algorithm

검색결과 640건 처리시간 0.026초

적응진화연산을 이용한 퍼지-전력계통안정화장치 설계 (A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation)

  • 황기현;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

Design and Field Test of an Optimal Power Control Algorithm for Base Stations in Long Term Evolution Networks

  • Zeng, Yuan;Xu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5328-5346
    • /
    • 2016
  • An optimal power control algorithm based on convex optimization is proposed for base stations in long term evolution networks. An objective function was formulated to maximize the proportional fairness of the networks. The optimal value of the objective function was obtained using convex optimization and distributed methods based on the path loss model between the base station and users. Field tests on live networks were conducted to evaluate the performance of the proposed algorithm. The experimental results verified that, in a multi-cell multi-user scenario, the proposed algorithm increases system throughputs, proportional fairness, and energy efficiency by 9, 1.31 and 20.2 %, respectively, compared to the conventional fixed power allocation method.

병렬 적응 진화알고리즘을 이용한 발전기 기동정지계획에 관한 연구 (A Parallel Adaptive Evolutionary Algorithm for Thermal Unit Commitment)

  • 김형수;조덕환;문경준;이화석;박준호;황기현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권9호
    • /
    • pp.365-375
    • /
    • 2006
  • This paper is presented by the application of parallel adaptive evolutionary algorithm(PAEA) to search an optimal solution of a thermal unit commitment problem. The adaptive evolutionary algorithm(AEA) takes the merits of both a genetic algorithm(GA) and an evolution strategy(ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. To reduce the execution time of AEA, the developed algorithm is implemented on an parallel computer which is composed of 16 processors. To handle the constraints efficiently and to apply to Parallel adaptive evolutionary algorithm(PAEA), the states of thermal unit are represented by means of real-valued strings that display continuous terms of on/off state of generating units and are involved in their minimum up and down time constraints. And the violation of other constraints are handled by repairing operator. The procedure is applied to the $10{\sim}100$ thermal unit systems, and the results show capabilities of the PAEA.

Application of Differential Evolution to Dynamic Economic Dispatch Problem with Transmission Losses under Various Bidding Strategies in Electricity Markets

  • Rampriya, B.;Mahadevan, K.;Kannan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.681-688
    • /
    • 2012
  • This paper presents the application of Differential Evolution (DE) algorithm to obtain a solution for Bid Based Dynamic Economic Dispatch (BBDED) problem including the transmission losses and to maximize the social profit in a deregulated power system. The IEEE-30 bus test system with six generators, two customers and two trading periods are considered under various bidding strategies in a day-ahead electricity market. By matching the bids received from supplying and distributing entities, the Independent System Operator (ISO) maximize the social profit, (with the choices available). The simulation results of DE are compared with the results of Particle swarm optimization (PSO). The results demonstrate the potential of DE algorithm and show its effectiveness to solve BBDED.

Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem

  • Thongdee, Thongpoon;Pitakaso, Rapeepan
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.11-21
    • /
    • 2015
  • The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.

이동 로봇 행위의 실시간 진화 (Realtime Evolutionary Learning of Mobile Robot Behaviors)

  • 이재구;심인보;윤중선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF

Opposition Based Differential Evolution Algorithm for Capacitor Placement on Radial Distribution System

  • Muthukumar, R.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.45-51
    • /
    • 2014
  • Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

진화 프로그램을 이용한 퍼지 클러스터링 (Fuzzy Clustering using Evolution Program)

  • 정창호;임영희;박주영;박대희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권1호
    • /
    • pp.130-130
    • /
    • 1999
  • In this paper, we propose a novel design method for improving performance of existing FCM-type clustering algorithms. First, we define the performance measure which focuses on bothcompactness and separation of clusters. Next, we optimize this measure using evolution program.Especially the proposed method has following merits: ① using evolution program, it solves suchproblems as initialization, number of clusters, and convergence to local optimum ② it reduces searchspace and improves convergence speed of algorithm since it represents chromosome with possiblepotential centers which are selected possible candidates of centers by density measure ③ it improvesperformance of clustering algorithm with the performance index which embedded both compactnessand separation Properties ④ it is robust to noise data since it minimizes its effect on center search.

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • 제1권3호
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.