• Title/Summary/Keyword: evolution algorithm

Search Result 640, Processing Time 0.023 seconds

Wide band prototype feedhorn design for ASTE focal plane array

  • Lee, Bangwon;Gonzales, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2016
  • KASI and NAOJ are making collaborating efforts to implement faster mapping capability into the new 275-500 GHz Atacama Submillimeter Telescope Experiment focal plane array (FPA). Feed horn antenna is one of critical parts of the FPA. Required fractional bandwidth is almost 60 % while that of traditional conical horn is less than 50 %. Therefore, to achieve this wideband performance, we adopted a horn of which the corrugation depths have a longitudinal profile. A profiled horn has features not only of wide bandwidth but also of shorter length compared to a linear-tapered corrugated horn, and lower cost fabrication with less error can be feasible. In our design process the flare region is represented by a cubic splined curve with several parameters. Parameters of the flare region and each dimension of the throat region are optimized by a differential evolution algorithm to keep >20 dB return loss and >30 dB maximum cross-polarization level over the operation bandwidth. To evaluate RF performance of the horn generated by the optimizer, we used a commercial mode matching software, WASP-NET. Also, Gaussian beam (GB) masks to far fields were applied to give better GB behavior over frequencies. The optimized design shows >23 dB return loss and >33 dB maximum cross-polarization level over the whole band. Gaussicity of the horn is over 96.6 %. The length of the horn is 12.5 mm which is just 57 % of the ALMA band 8 feed horn (21.96 mm).

  • PDF

Updating calibration of CIV-based single-epoch black hole mass estimators

  • Park, Daeseong;Barth, Aaron J.;Woo, Jong-Hak;Malkan, Matthew A.;Treu, Tommaso;Bennert, Vardha N.;Pancoast, Anna
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2016
  • Black hole (BH) mass is a fundamental quantity to understand BH growth, galaxy evolution, and connection between them. Thus, obtaining accurate and precise BH mass estimates over cosmic time is of paramount importance. The rest-frame UV CIV ${\lambda}1549$ broad emission line is commonly used for BH mass estimates in high-redshift AGNs (i.e., $2{\leq}z{\leq}5$) when single-epoch (SE) optical spectra are available. Achieving correct and accurate calibration for CIV-based SE BH mass estimators against the most reliable reverberation-mapping based BH mass estimates is thus practically important and still useful. By performing multi-component spectral decomposition analysis to obtained high-quality HST UV spectra for the updated sample of local reverberation-mapped AGNs including new HST STIS observations, CIV emission line widths and continuum luminosities are consistently measured. Using a Bayesian hierarchical model with MCMC sampling based on Hamiltonian Monte Carlo algorithm (Stan NUTS), we provide the most consistent and accurate calibration of CIV-based BH mass estimators for the three line width characterizations, i.e., full width at half maximum (FWHM), line dispersion (${\sigma}_{line}$), and mean absolute deviation (MAD), in the extended BH mass dynamic range of log $M_{BH}/M_{\odot}=6.5-9.1$.

  • PDF

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

New TDOA-Based Three-Dimensional Positioning Method for 3GPP LTE System

  • Lee, Kyunghoon;Hwang, Wonjun;Ryu, Hyunseok;Choi, Hyung-Jin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.264-274
    • /
    • 2017
  • Recently, mobile positioning enhancement has attracted much attention in the 3rd generation partnership project long-term evolution system. In particular, for urban canyon environments, the need for three-dimensional (3D) positioning has increased to enable the altitude of users to be measured. For several decades, several time difference of arrival (TDOA-) based 3D positioning methods have been studied; however, they are only available when at least four evolved Node Bs (eNBs) exist nearby or when all eNBs have the same height. Therefore, in this paper, we propose a new 3D positioning method that estimates the 3D coordinates of a user using three types of two-dimensional (2D) TDOAs. However, the give inaccurate results owing to the undefined axis of the 2D coordinate plane. Therefore, we propose a novel derivation of the hyperbola equation, which includes the undefined axis coordinate in the 2D hyperbola equation. Then, we propose an interaction algorithm that mutually supplies the undefined axis coordinate of users among 2D TDOAs. By performing extensive simulations, we verify that the proposed method is the only solution applicable by using three eNBs with different heights.

A Comparison of Halo Merger History for Two Different Simulation Codes : GADGET-2 and RAMSES

  • Jung, In-Tae;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2012
  • We present our study on a comparison of dark matter halo merger history from the runs using different numerical simulation codes. To analyze the uncertainty caused by the use of different N-body calculation methods, we compare the results from two cosmological hydrodynamic simulation codes GADGET-2 and RAMSES, which use a TreePM algorithm and the Adaptive Mesh Refinement(AMR) technique respectively. We perform cosmological dark matter-only simulations with the same parameter set and initial condition for both. The dark matter halo mass functions from two simulation runs correspond well with each other, except for lower mass haloes. The discrepancy on the low-mass haloes in turn causes a notable difference in halo merger rate, especially for the case of extremely minor merger. The result from GADGET-2 predicts that most haloes undergo more number of mergers with small haloes than that from RAMSES, independent of halo mass and environment. However, in the context of the study on galaxy evolution, such extreme minor mergers generally do not have strong effects on galaxy properties such as morphology or star formation history. Hence, we suggest that this uncertainty could be quantitatively negligible, and the results from two simulations are reliable even with only minor difference in merger history.

  • PDF

Investigation of pressure-volume-temperature relationship by ultrasonic technique and its application for the quality prediction of injection molded parts

  • Kim Jung Gon;Kim Hyungsu;Kim Han Soo;Lee Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.163-168
    • /
    • 2004
  • In this study, an ultrasonic technique was employed to obtain pressure-volume-temperature (PVT) rela­tionship of polymer melt by measuring ultrasonic velocities under various temperatures and pressures. The proposed technique was applied to on-line monitoring of injection molding process as an attempt to predict quality of molded parts. From the comparison based on Tait equation, it was confirmed that the PVT behav­ior of a polymer is well described by the variation of ultrasonic velocities measured within the polymer medium. In addition, the changes in part weight and moduli were successfully predicted by combining the data collected from ultrasonic technique and artificial neural network algorithm. The results found from this study suggest that the proposed technique can be effectively utilized to monitor the evolution of solid­ification within the mold by measuring ultrasonic responses of various polymers during injection molding process. Such data are expected to provide a critical basis for the accurate prediction of final performance of molded parts.

Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method (연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.

Energy-Aware Virtual Data Center Embedding

  • Ma, Xiao;Zhang, Zhongbao;Su, Sen
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.460-477
    • /
    • 2020
  • As one of the most significant challenges in the virtual data center, the virtual data center embedding has attracted extensive attention from researchers. The existing research works mainly focus on how to design algorithms to increase operating revenue. However, they ignore the energy consumption issue of the physical data center in virtual data center embedding. In this paper, we focus on studying the energy-aware virtual data center embedding problem. Specifically, we first propose an energy consumption model. It includes the energy consumption models of the virtual machine node and the virtual switch node, aiming to quantitatively measure the energy consumption in virtual data center embedding. Based on such a model, we propose two algorithms regarding virtual data center embedding: one is heuristic, and the other is based on particle swarm optimization. The second algorithm provides a better solution to virtual data center embedding by leveraging the evolution process of particle swarm optimization. Finally, experiment results show that our proposed algorithms can effectively save energy while guaranteeing the embedding success rate.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.