• Title/Summary/Keyword: evolution — galaxies

Search Result 443, Processing Time 0.021 seconds

How to quantify the similarity of 2D distributions: Comparison of spatial distribution of Dark Matter and Intracluster light

  • Yoo, Jaewon;Ko, Jongwan;Sabiu, Cristiano G.;Chun, Kyungwon;Shin, Jihye;Hwang, Ho Seong;Smith, Rory;Kim, Hyowon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.67.4-68
    • /
    • 2021
  • In studying the dynamical evolution of galaxy clusters, one intriguing approach is to compare the spatial distributions of various components, such as the dark matter, the member galaxies, the gas, and the intracluster light (ICL; the diffuse light from stars, which are not bound any individual cluster galaxy). If we find a visible component whose spatial distribution coincides with the dark matter distribution, then we could draw a dark matter map without requiring laborious weak lensing analysis. Furthermore, if the component traces the dark matter distribution better for more relaxed galaxy cluster, we could use the similarity as a dynamical stage estimator of the galaxy cluster. We present a novel new methodology to quantify the similarity of two or more 2-dimensional spatial distributions. We apply the method to a sample of galaxy clusters at different dynamical stages simulated within N-cluster Run, which is an N-body simulation using the galaxy replacement technique. Among the various components (stellar particles, galaxies, ICL), the velocity defined ICL+ brightest cluster galaxy (BCG) component traces the dark matter best. Between the sample galaxy clusters, the relaxed clusters show stronger similarity of the spatial distribution between the dark matter and ICL+BCG than the dynamically young clusters.

  • PDF

FLASH: The First Large Absorption Survey in HI with the Australian Square Kilometre Array Pathfinder

  • Yoon, Hyein;Sadler, Elaine;Allison, James;Moss, Vanessa;Mahony, Elizabeth;Whiting, Matthew;Su, Renzhi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2020
  • FLASH is a blind neutral hydrogen (HI) absorption line survey, eventually targeting about 100,000 background radio continuum sources in the entire southern sky using the full 36-antenna of the Australian Square Kilometre Array Pathfinder (ASKAP). Our primary goal is to search for associated and intervening HI absorption lines in the intermediate redshift range 0.4 < z < 1.0. The survey aims to understand the evolution of HI gas in galaxies as well as various physical mechanisms in active galactic nuclei, such as accretion and feedback processes. In this poster, we give an overview of the FLASH survey and present the preliminary results from our first 100-hrs of pilot observations. The latest survey data covers 1,000 square degrees and is ideal for validating observation and data processing in the continuous 300MHz-width low frequency ASKAP band (700-1000MHz). One of the crucial objectives of the pilot survey is to establish the analysis methodology that will be applied to upcoming large absorption surveys in the future. We discuss our data quality validation and present some detections of associated/intervening HI absorption lines. These absorption lines allow us to trace the cold gas properties of active and normal galaxies at higher redshifts where the HI emission line is too weak to be detectable.

  • PDF

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

The near infrared image of GRB100205A field

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2012
  • GRB100205A is a Gamma Ray Burst (GRB) which is suspected to be at redshift z=11-13 due to its very red H-K color($(H-K)_{vega}=2.1{\pm}0.5$). We observed a field centered at GRB100205A with Wide Field Camera (WFCAM) at United Kingdom Infrared Telescope (UKIRT) in Hawaii, in order to search a quasar that could be located around the GRB. The images were obtained in J, H, and K filters covering a square area of $0.78deg^2$. Our J-, H-, and K-band data reach the depths of 22.5, 22.1, and 21.0 mag (Vega) at $5{\sigma}$, respectively. Also using z-band image observed by CFHT, we find 8 candidates that have colors consistent with a quasar at z=11-13(non-detection in z-, J-band and $(H-K)_{vega}$ > 1.6). However, the shallow depths of J-, H-band are not enough to verify their true nature. Instead, we identify many red objects to be old or dusty galaxies at $z{\geq}3$. The number density of such objects appears about twice or more than that of the field of Cosmological Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) of UKIRT Infrared deep sky survey (UKIDSS). On scales between 0.18' and 15' the correlation function is well described by a power law with an exponent of ${\approx}-0.9$ and this implies that those objects are like galaxies. It is interesting that many red galaxies exist in the region where the GRB was detected.

  • PDF

On the Origin of the Oosterhoff Dichotomy among Globular Clusters and Dwarf Galaxies

  • Jang, Sohee;Lee, Young-Wook;Joo, Seok-Joo;Na, Chongsam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2014
  • The presence of multiple populations is now well-established in most globular clusters in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our models, the instability strip in the metal-poor group II clusters, such as M15, is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters like M3 are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip with metallicity can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich clusters having Oosterhoff-intermediate characteristics, such as NGC 1851, as well as of most metal-rich clusters having RR Lyraes with longest periods (group III) can also be reproduced, as more helium-rich third and later generations of stars (G3) penetrate into the instability strip with further increase in metallicity. Therefore, although there are systems where the suggested population shift cannot be a viable explanation, for the most general cases, our models predict that the RR Lyraes are produced mostly by G1, G2, and G3, respectively, for the Oosterhoff groups I, II, and III.

  • PDF

Spectroscopic Confirmation of Galaxy Clusters at z~0.92

  • Kim, Jae-Woo;Im, Myungshin;Lee, Seong-Kook;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2015
  • Galaxy clusters have provided important information to understand the evolution of the universe, since the number density and mass of clusters are tightly related to the cosmological parameters. In addition, galaxy clusters are an excellent laboratory to investigate the galaxy evolution in dense environments. However, finding galaxy clusters at high redshift ($z{\geq}1$) still remains as a main subject in astronomy due to their rareness and difficulty in identifying such objects from optical imaging data alone. Here, we report a spectroscopic follow-up observation of distant galaxy cluster candidates identified by a deep optical-NIR dataset of Infrared Medium-deep Survey. Through the galaxy spectra taken with the IMACS instrument on the Magellan telescope, we confirm at least 3 massive clusters at z~0.92. Interestingly, the maximum spatial separation between these clusters is ~8Mpc, which implies that this system is a new supercluster in the distant universe. We also discuss properties of galaxies in these clusters based on multi-wavelength photometric data.

  • PDF

Optical and Near-IR Photometry of the NGC 4874 Globular Cluster System with the Hubble Space Telescope

  • Cho, Hyejeon;Blakeslee, John P.;Peng, Eric W.;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2013
  • We present our study of analyzing the photometric properties of the globular cluster (GC) system which resides in the extended halo of the central bright Coma cluster galaxy NGC 4874. The core of the Coma cluster of galaxies (Abell 1656) was observed with both the HST Advanced Camera for Surveys (ACS) in the F475W (g475) and F814W (I814) and Wide Field Camera 3 IR Channel (WFC3/IR) in the F160W (H160) filters. The data analysis procedure and GC candidate selection criteria are briefly described. We investigate the interesting "tilt" features in color-magnitude diagrams for this GC system and their link to the nonlinear color-metallicity relation for GCs. The NGC 4874's GC system exhibits a bimodal distribution in the optical g475-I814 color and much more than half the GCs fall in the red side at g475-I814 ~ 1.1. This bimodality is weakened in the optical-IR I814-H160 color; the quantitative analysis on the features of both color distributions using the Gaussian Mixture Modeling code proves the bimodalities are different. Both colors, thus, cannot linearly reflect the bimodality of an underlying metallicity, supporting the suggestion that observed bimodalities in extragalactic GC colors are the metallicity-to-color projection effect.

  • PDF

Investigating the Non-linearity Effect on the Color-to-Metallicity Conversion of Globular Clusters

  • Kim, Hak-Sub;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2014
  • Metallicity distribution of globular clusters (GCs) provides an important clue for star formation history of their host galaxy. With an assumption that GCs are generally old, GC colors have been used as a proxy of GC metallicities. Bimodal GC color distributions observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations (CMRs) can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using the photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC CMRs on the transformation of GC color distributions into metallicity distributions. Although, in some colors, offsets are present between observations and models in the CMRs, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled CMRs from various color distributions having different morphologies. On the other hand, the linearly converted metallicity distributions from GC colors show a significant discrepancy with the observed spectroscopic metallicity distribution. We discuss the implications of our results.

  • PDF

EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE

  • Shin, Jihye;Kim, Juhan;Kim, Sungsoo S.;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature uctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.

The self induced secular evolution of gravitating systems.

  • Pichon, Christophe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2017
  • Since the seminal work of Perrin, physicists have understood in the context of kinetic theory how ink slowly diffuses in a glass of water. The fluctuations of the stochastic forces acting on water molecules drive the diffusion of the ink in the fluid. This is the archetype of a process described by the so-called fluctuation-dissipation theorem, which universally relates the rate of diffusion to the power spectrum of the fluctuating forces. For stars in galaxies, a similar process occurs but with two significant differences, due to the long-range nature of the gravitational interaction: (i) for the diffusion to be effective, stars need to resonate, i.e. present commensurable frequencies, otherwise they only follow the orbit imposed by their mean field; (ii) the amplitudes of the induced fluctuating forces are significantly boosted by collective effects, i.e. by the fact that, because of self-gravity, each star generates a wake in its neighbours. In the expanding universe, an overdense perturbation passing a critical threshold will collapse onto itself and, through violent relaxation and mergers, rapidly converge towards a stationary, phase-mixed and highly symmetric state, with a partially frozen orbital structure. The object is then locked in a quasi-stationary state imposed by its mean gravitational field. Of particular interests are strongly responsive colder systems which, given time and kicks, find the opportunity to significantly reshuffle their orbital structure towards more likely configurations. This presentation aims to explain this long-term reshuffling called gravity-driven secular evolution on cosmic timescales, described by extended kinetic theory. I will illustrate this with radial migration, disc thickening and the stellar cluster in the galactic centre.

  • PDF